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Abstract—Fully Homomorphic Encryption (FHE) allows computa-
tions over encrypted data without sacrificing confidentiality, but its
practicality is hindered by high computational demands and memory
access constraints. While existing FHE accelerators focus on improving
computational efficiency, they are often limited by the insufficient memory
bandwidth and inefficient data transfer schemes, leading to significant
bottlenecks, especially for processing large amounts of data. In this work,
we evaluate whether OptoLink, a photonic interconnect architecture, is
scalable and capable of providing high bandwidth to overcome these
limitations. Leveraging Wavelength Division Multiplexing (WDM) with
Space Division Multiplexing (SDM), OptoLink achieves an impressive
bandwidth of 1.6 TB/s over 128 channels—a 300x improvement over
traditional electronic network. Additionally, its ability to efficiently broad-
cast data and support parallel processing further enhances performance.
The broadcasting capability not only enables parallelism but also reduces
power consumption in earlier NTT stages, improving overall energy
efficiency. With its improved data throughput, scalability, and lower
latency, OptoLink offers a robust solution capable of satisfying the high
data transfer and memory demands of current FHE accelerators.

Index Terms—Fully Homomorphic Encryption, Number Theoretic
Transform, Wavelength Division Multiplexing, Memory Acceleration

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) represents a substantial
breakthrough in privacy-preserving computing, enabling users to
perform calculations on encrypted data without requiring to decrypt
it. Secure data processing technology remains critical for applications
operating within potentially untrusted environments including cloud
computing, financial and healthcare systems, which demand the
protection of sensitive data during computations [1–3]. As illustrated
in Fig. 1, FHE enables secure computation offloading through data
encryption before sending it to a server for processing and receiving
the processed result in encrypted form. This process ensures that even
if the server is compromised, the sensitive data remains protected
throughout the computation because the decryption key is never
shared with the server, maintaining the data confidentiality. Large
integer and polynomial multiplications, which are fundamental to
FHE operations across both integer-based and ring learning with
errors (R-LWE) based schemes, are particularly computationally
demanding operations that determine how efficient FHE schemes
are [4, 5]. Within these schemes, the Number Theoretic Transform
(NTT) plays a crucial role in modular polynomial multiplication,
accounting for a substantial portion of the computational resources
required throughout the FHE process. For example, it represents 51%
of the execution time for ciphertext multiplication and 55% of the
inference time in homomorphic encryption-based models such as HE
ResNet-50 [6, 7]. While NTT reduces the asymptotic complexity of
polynomial multiplication from O(n2) to O(n log n), where n is the
degree of the polynomial, it also introduces challenges in terms of
high memory bandwidth and complex access patterns, especially for
hardware acceleration [8, 9]. Efforts to accelerate the NTT through
various platforms, including FPGA, ASIC, and Compute-in-Memory
architectures, have shown promise but remain limited in terms of
overall acceleration ratios [10–12]. Resolving these hardware issues
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Fig. 1. Computational flow in fully holomorphic encryption (FHE).

is crucial to increasing the efficiency and practicality of FHE in a
variety of security-sensitive applications [1–3].

Challenge. Parallel and pipelined NTT architectures have been de-
veloped to improve the computational efficiency of FHE for specific
security parameters [13]. Although these optimizations accelerate
computations, they often lack flexibility, which makes them less
adaptable across different security levels and hardware configurations.
One of the biggest challenges for large-scale NTT accelerator design
is to deal with data flow efficiently because of the complicated
memory access patterns [14]. NTT computation require continuous
movement of polynomial coefficients and twiddle factors from RAM,
which induces memory access conflicts, particularly read-after-write
conflicts among RAMs and processing elements (PEs) [14, 15].
Pipeline stalls have been used to mitigate these conflicts [16], but they
come at the cost of reduced system performance. High-security FHE
parameters still impose significant bandwidth demands on memory
and interconnects [17]. Current limitations of electronic networks in
meeting these demands point to the necessity of novel interconnect
solutions that can provide the high throughput requirements for
scalable FHE acceleration.

Proposal. Photonic interconnects can be a promising alternative
to conventional electronic networks, effectively addressing key is-
sues of FHE acceleration. Unlike electronic networks that rely on
resource-intensive multiplexer (MUX) connections in conventional
NTT designs, photonic links provide direct, conflict-free data paths,
reducing circuit complexity and alleviating memory bandwidth bot-
tlenecks [15]. Furthermore, photonic interconnects exhibit efficient
scalability via wavelength-division multiplexing (WDM) and space-
division multiplexing (SDM), facilitating one-to-many communica-
tion highly suited to high-data-rate transmission [18]. These advan-
tages have been demonstrated in DNN accelerators [19], yet their
promise has not been well examined for FHE. In this paper, we seek
to determine whether photonic interconnects can indeed alleviate the
memory bandwidth limitations in FHE accelerators. That is, we seek
to investigate the following research questions.
RQ1: Can photonic interconnects overcome the memory bandwidth
limitations of conventional electronic networks in FHE computation?
RQ2: Are photonic interconnects scalable to support complex mem-
ory acess patterns due to various FHE security levels and parameters?
RQ3: How do photonic interconnects stand against electronic net-
works in terms of latency, power consumption and area efficiency?
By evaluating these parameters methodically, this study examines the
feasibility of photonic interconnects as a promising option for large-979-8-3315-2710-5/25/$31.00 © 2025 IEEE



scale FHE computations. To answer the question raised above, this
paper introduces OptoLink, a photonic interconnect architecture, to
overcome memory bandwidth limitations in FHE accelerators. Our
key contributions are highlighted below.
1) Unlike prior works focused only on compute acceleration [14],

we identify memory bandwidth as the key bottleneck in FHE and
show that compute speedup alone is insufficient.

2) We performed a comprehensive analysis and comparison of pho-
tonic and electronic interconnects for FHE use. We are the first,
to the best of our knowledge, to consider photonic interconnects
for this application and provide an end-to-end analysis of their
potential benefits and trade-offs.

3) We propose OptoLink, an optical interconnect architecture tai-
lored for FHE, with significantly reduced memory access con-
tention and improved bandwidth for NTT operations. Our archi-
tecture is scalable and provides high data rates at reduced power
consumption in earlier NTT stages (Sec. III).

4) Using photonics process design kits (PDKs) in combination with
electronic-photonic design automation (EPDA) software such as
Synopsys OptSim and OptoCompiler, we develop a scal-
able OptoLink design for several NTT core designs. As seen
from simulations, OptoLink is able to support up to 1.6 TB/s
bandwidth using 128 optical channels, with potential to offer even
more throughput (Sec.III-E, Sec.IV).

The rest of the paper is structured as follows: Sec.II discusses back-
ground, existing limitations, and the motivation behind OptoLink.
Sec.III details our design and implementation. Sec.IV presents results
and analysis, followed by the conclusion in Sec.V.

II. BACKGROUND AND MOTIVATION

In this section we provide a brief description of NTT operation in
FHE, existing FHE accelerators, and their limitations.

A. Number Theoretic Transform(NTT)

NTT is a version of the Fast Fourier Transform (FFT) that has
been optimized for integer polynomial operations and finite fields,
which makes it particularly suitable for cryptographic applications
that require exact arithmetic, like lattice-based cryptography. The
NTT is taken over a ring, Rq = Zq[x]/(x

n+1), with prime modulus
q where q ≡ 1 mod n. This guarantees the existence of a primitive
n-th root of unity, denoted by ω, such that ωn ≡ 1 mod q. The NTT
transforms a polynomial a(x) =

∑n−1
i=0 aix

i into a new polynomial
representation ã(x) using the formula,

ãi =

n−1∑
j=0

ajω
i·j mod q, for i = 0, 1, . . . , n− 1 (1)

where ωi·j terms are referred to as twiddle factors. These twiddle
factors are associated with the powers of the root of unity ω, enabling
the NTT to perform convolution over polynomial coefficients directly
in the NTT domain. Polynomial multiplication c(x) = a(x) · b(x)
can be done in the NTT domain by transforming a and b into their
respective NTT representations, multiplying point-wise, and then
taking the inverse NTT (INTT) to get back the result in the original
domain.

c = INTT(NTT(a) ◦ NTT(b)), (2)

where ◦ is the pointwise multiplication of NTT-transformed coeffi-
cients. The INTT, which recovers the result from the NTT domain
can be represented by,

aj =
1

n

n−1∑
i=0

ãi · ω−i·j mod q (3)

0

500

1000

1500

2000

2500

3000

Bandwidth (GB/s)

HBM3

Fig. 2. Bandwidth requirements of state-of-the-art FHE accelerators.

where ω−i·j is the inverse twiddle factor, scaling by n−1 mod q
completes the transformation.

B. Existing FHE Accelerators

Ever since its introduction in 2009 [20], FHE has made significant
progress in reducing its initial computational overhead of being 109×
slower than unencrypted computation. It remains, however, 10, 000×
to 100, 000× slower than conventional computing, which justifies
the need for special-purpose hardware accelerators [10]. GPUs, with
their parallel processing nature, have enhanced FHE performance by
as much as 257× speedups compared to CPUs [21]. Open-source
libraries such as cuHE and cuFHE further optimize GPU-based FHE,
whereas TensorFHE has shown a 1625.6× speedup compared to
CPUs and a 2.9× improvement compared to F1+, comparable to
ASIC accelerators [22]. Nevertheless, GPUs are not optimized for
FHE and thus consume a lot of power and are inefficient in memory-
heavy operations. FPGAs offer greater adaptability for custom FHE
implementations like NTT, with solutions such as HEAX and Posei-
don achieving over 1000× speedups compared to GPUs [23]. Designs
like FAB further enhance FHE acceleration through efficient resource
management [24]. ASIC accelerators, tailored to FHE schemes like
CKKS and BFV, achieve even superior performance. Bootstrapping
hardware and data management optimizations, as in CraterLake [11]
and ARK [25], enable deeper computations and reduce bottlenecks,
offering orders-of-magnitude improvement over GPUs. ASICs are,
however, plagued by large chip area, high power, and enormous
memory requirements, rendering them hard to deploy in reality.

C. Limitations of FHE Acceleration Trends

Data Inflation: Memory bandwidth remains a key bottleneck in FHE
applications [26], especially in CKKS, as ciphertexts are significantly
larger than plaintexts. The inflation causes memory accesses fre-
quently, which computation-oriented optimizations cannot mitigate.
For instance, a chip with 40, 960 modular multiplication units at
2GHz and 3TB/s HBM3 completes computations in 0.18ms, but
data loading takes 2.1ms [25].
Memory Bandwidth: Irregular memory access patterns also aggra-
vate bandwidth limitations. NTT computations require the storage of
massive twiddle factors and intermediate results, which tend to be
larger than on-chip caches and cause costly off-chip memory access.
Although 4-step FFT/NTT enhance parallelism, they also introduce
additional twisting factors, which add memory overhead [27]. Fur-
thermore, the (n logn)/2 butterflies in FFT/NTT pipelines demand
substantial hardware resources as n grows, creating dynamic depen-
dencies that static hardware cannot efficiently handle [14].
Dynamic Data Dependency: Key-switching worsens the issues by
causing huge memory demands. Decomposition parameter (dnum)



Data

- +
Driver

Comparator

TIA

Comparator

TIA

Transmitter Receiver Receiver

PD PD

Laser

Coupler Waveguide

MRR MRR MRR MRR

𝜆0 𝜆1

Data

- +
Driver

Transmitter

Data Data

- + - +

Fig. 3. WDM photonic interconnect linking two transmitters and receivers,
working on two different wavelengths of λ1 and λ2.

affects computation and memory, where a trade-off must be made be-
tween NTT operations and basis conversion. Parallelism approaches
such as residue-polynomial-level parallelism is plagued by extra data
exchanges and coefficient-level parallelism has latency caused by
global NTT communication. Hardware needs to reconfigure dynami-
cally, yet insufficient on-chip memory will result in recurring off-chip
access, exacerbating latency and power consumption [17].

With these growing memory requirements, high-bandwidth solu-
tions are required for effective FHE acceleration. Fig. 2 emphasizes
the bandwidth requirements of current FHE hardware, and it can be
seen that current electronic interconnects cannot keep up with
these data transfer requirements [26].

III. METHODOLOGY

In this section, we consider photonic interconnects as a viable
solution to meet the required memory bandwidth of FHE accelerators,
design a scalable photonic network architecture, and define an evalu-
ation metric to compare the performance with electronic counterparts.

A. Pathway to TB/s Bandwidth for FHE

To mitigate the bandwidth constraints, emerging chiplet-based FHE
accelerators introduced high-bandwidth memory (HBM) technologies
such as HBM3 in order to reduce data transfer delay [28]. HBM3,
with a 1024-bit datawidth, achieves bandwidths of up to 0.819TB/s
per stack [29]. To meet the bandwidth demands of current FHE
accelerators, which often require TB/s as seen in Fig. 2, multiple
HBM3 stacks with aggregated datawidths in the thousands are
typically employed. Photonic interconnects provide an effective way
to solve these issues, as explained in the following sections.
Ultra High Bandwidth: With their ability to support ultra-high
bandwidths, photonic interconnects represent an attractive alterna-
tive for FHE workloads. The proposed OptoLink architecture, for
example, achieves a bandwidth of 0.8TB/s with only 64 channels
which is 16× lower than bitwidth of HBM3 and can scale to meet
the demands of all the accelerators listed in Fig. 2. This characteristic
reflects OptoLinks strength to compete with existing electronic
interconnect alternatives while minimizing high datawidth electric
interfaces’ overhead and complexity.
Flexible Routing: In addition, OptoLink overcomes the generality
constraints of FHE accelerators through flexible [14] data routing and
workload parallelism. Through dynamic multiplexing of data over
optical channels, OptoLink provides efficient use of resources and
minimization of data movement latency between PEs and memory.
Leveraging the broadcast property of suggested OptoLink network,
it further improves flexibility by allowing simultaneous data broad-
casting to several PEs. This flexibility allows FHE accelerators to
support different computation patterns from high-bandwidth NTT
computation to memory-constrained key-switching without heavy
architectural changes. The details of the OptoLink architecture are
elaborated in Sec. III-C, explaining how its architecture achieves
ultra-high-speed, low-latency data communication.

Furthermore, experimental results validating the system’s perfor-
mance, scalability, and reliability are presented in Sec. IV. Through
OptoLink, FHE accelerators can be provided with enough band-
width to maintain key workloads without compromising adaptability
and efficiency, and ultimately, introduce the scalability and viability
of FHE to practical, privacy-preserving applications.
B. Photonic Interconnects

Photonic interconnects use silicon photonics to achieve fast and
energy-efficient data transmission by replacing traditional electrical
signals with light. As shown in Fig. 3, light is produced by a laser that
is coupled into an on-chip waveguide, where micro-ring resonators
(MRRs) are employed as modulators and filters [30] to modulate
electrical data onto selected wavelengths of light. The transmitted
signals use the waveguide path to reach the receiver section which
contains another MRR array directing the signals to photodetectors
(PDs) for electrical signal recovery. In addition to modulation and
filtering, receiver MRRs are also utilized as optical tunable splitters
for broadcast communication efficiently. These splitters work in a
partially resonant state, and they let a portion of the optical power
pass through the drop port and the remaining portion through the
through port. The carrier concentration within the ring is changed
by controlling the bias voltage, thereby modulating the effective
refractive index of the waveguide [31]. This dynamic tuning allows
for fine-grained control of the way the optical power is split between
the through and drop ports, optimizing data distribution among
several PEs. An important advantage of photonic interconnects is
the application of WDM to allow the simultaneous transmission of
multiple data streams via a single waveguide. This technology allows
bandwidth capacity to be greatly improved without requiring more
interconnects. Existing systems possess the capability to accommo-
date a maximum of 64 distinct wavelengths, each operating at a rate
of 10Gb/s, thereby achieving aggregate throughput levels exceeding
100Gb/s [32, 33]. SDM provides the capability to extend bandwidth
potential through implementing multiple parallel waveguides [18].

C. Single OptoLink Channel

Memory controller and NTT modules are connected within a single
OptoLink channel using photonic interconnect as shown if Fig. 4. The
architecture employs WDM to send multiple signals simultaneously
through a single waveguide, with each signal assigned a distinct
wavelength. Input data such as twiddle factors and coefficients are
stored in the memory controller where they are converted to elec-
tric signals through digital-to-analog converters (DACs). Transmitter
MRRs modulate certain wavelengths onto waveguides according to
the converted electrical signals. On the receiving side, tuned MRRs
filter out resonant wavelengths, directing each signal to a PD that
converts it back into an electrical signal. This signal is then amplified
by TIAs and processed by comparators to reconstruct the digital data.
Once the data is processed by the NTT module, the results undergo
the same demodulation and modulation for return to the memory
controller to perform the next stage of the NTT computation. The
same wavelengths can be utilized for input and output transmission
because distinct waveguides will be utilized for input and output.
This strategy of wavelength reuse also lowers the systems power
consumption by lowering the number of wavelengths used.

D. Scalable OptoLink Network Architecture

The OptoLink architecture in Fig. 5 uses five distinct waveguides
to connect to four NTT modules in order to carry twiddle factors and
data. Waveguides 1 and 2 transport coefficients to the NTT modules,
while Waveguides 3 and 4 transfer the required twiddle factors. After
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processing, the outputs are sent back to the memory controller via
Waveguide 5. The system utilizes two groups of wavelengths to
control data flow: λ1−λ16 for input coefficients and twiddle factors,
and λ17 − λ24 for output transmission. Each waveguide carries a
single bit per channel, while multiple optical channels can function
in parallel via SDM for rapid data transfer. For example, for an 128-
channel OptoLink system, there will be 128 waveguides in parallel.

Three distinct ways of communication between memory and NTT
modules in OptoLink—unicast, broadcast, and multicast—offer flex-
ible data transfer appropriate for various computation stages. For an
n = 8 polynomial, as illustrated in Fig. 5, each NTT module needs
distinct input coefficients, which requires unicast transmission. In this
mode, separate data streams are concurrently sent to different NTT
modules through Waveguide 1, using wavelengths λ1 − λ4. In this
scenario, all receiver MRRs are in an on-resonance state, ensuring
that no signal passes through the through port, thus directing data
solely to the intended modules. The first NTT stage employs common
twiddle factors which allows broadcast-mode data distribution for all
NTT modules. In this mode, receiver MRRs are tuned to a partially
resonant state, allowing optical signals to be evenly split between the
through and drop ports. For example, wavelength λ9 is designated
for broadcast transmission from memory to all NTT modules via
Waveguide 3. As the computation progresses to the second stage,
NTT modules exhibit distinct data dependencies—NTT 1 and 2 share
one set of twiddle factors, while NTT 3 and 4 share another. This
requires multicast transmission, which combines unicast and broad-
cast techniques. Wavelength λ9 is used for broadcast communication
to NTT modules 1 and 2, whereas wavelength λ10 is assigned to
NTT modules 3 and 4. OptoLink’s broadcasting feature also allows
for flexible routing by dynamically adjusting communication modes
through receiver MRR tuning, enabling data to be directed to any
NTT module as required. This capability overcomes the limitations
of traditional static hardware, which lacks adaptability [15]. As the
polynomial size n increases, the demand for hardware resources
grows, and the data dependencies in NTT computations can vary
greatly [14]. The data path adjustment capability of OptoLink can
be operated in real time for effective computational requirements
adaptation and smooth scalability improvement while conventional
architectures demand costly modifications for handling changes.

The design of OptoLink incorporates scalable features which fulfill
rising computational demands for FHE accelerators. The architecture
reaches high throughput levels through increased optical channels
and SDM and WDM implementation. Research indicates that one
waveguide can process 64 wavelength multiplexing points which
produces valuable bandwidth improvements [33]. The tunability of
MRR does allow every transmitter to connect to more than one
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Fig. 5. Schematic of the OptoLink architecture interfacing with four NTT
modules where n = 8. Wavelengths λ1−λ16 are used for input transmission
and λ17−λ24 are used for output transmission for broadcast communication.

receiver, resulting in fewer modulators, but overall power goes up
with the complete setup of off-chip lasers, MRRs, and photodetectors
added. A trade-off between power efficiency and scalability and
supporting high-throughput FHE workload tolerance is therefore
necessary. The OptoLink architecture is able to meet these challenges
successfully, meeting bandwidth and scalibitlity demands while being
versatile across applications.

E. Implementation Platform and Parameter Selection

To evaluate the performance of the proposed OptoLink architecture,
we established photonic interconnects between NTT modules and off-
chip memory, to tackle the communication bottlenecks identified in an
FPGA-based FHE accelerator, named HEAX [15]. HEAX’s memory-
to-NTT complexities are used here to highlight the limitations of
traditional electronic networks and the necessity of photonic solutions
for data transfer rate optimization and latency minimization. In
order to obtain a proper estimate of OptoLink, we used Synopsys
OptoCompiler to incorporate critical photonic parameters such
as detector responsivity, modulator insertion loss, and coupling ef-
ficiency (see Table I). Using these parameters we calculated the
needed laser power, to facilitate proper signal transmission despite
optical defects. We employed Synopsys Design Compiler to
examine the timing behavior, power consumption, and area usage of
the electrical components as well. To explore scalability across vari-
ous computational workloads, we conducted evaluations with diverse
NTT module configurations and bitwidth, namely configurations with
4, 8, and 16 modules. This detailed study provided us with keen
insight into OptoLink’s ability to meet the increasing needs of FHE
acceleration without compromising efficiency.

F. Evaluation Metric (R)

To evaluate the performance of the electronic network and Op-
toLink in a fair way, we present an evaluation metric R. This metric
reflects trade-offs among bitrate, latency, and power consumption.
Because there are huge differences in bitrate and power consumption

TABLE I
PHOTONIC PARAMETERS CONSIDERED IN OptoLink.

Component Value
Laser Source 5 dB

Coupler 1 dB
Splitter 0.2 dB

Waveguide 1 dB/cm
Ring Drop 0.7 dB

Ring Through 0.01 dB
Photodetector 0.5 dB
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between photonic and electronic interconnects, this function gives a
normalized metric to compare efficiency of the system

R =
Bitrate

Latency × Power
(4)

where Bitrate is the data transmission rate, Latency is the time
taken for transferring data, and Power is the total power consumption
of the system. A higher R value indicates a more efficient intercon-
nect system, which balances high throughput with power overhead.
Our target is to maximize the value of R for OptoLink, to make sure
that it outperforms electronic networks.

IV. RESULTS AND ANALYSIS

A. Timing Analysis

To examine the timing performance of the OptoLink network, we
conducted data transmission experiments using two optical channels,
simulated with Synopsys OptoCompiler. A pseudo-random bit
sequence (PRBS) generator transmitted the data at a rate of 10Gb/s,
with 6.4ns taken to transmit one sequence. The modulator MRRs
encoded the data onto specific wavelengths—1550nm for channel 1
and 1551nm for channel 2—before transmission. Fig. 7(c), Fig. 7(d)
are the data received on channel 1 and channel 2, respectively, con-
firming secure data transfer and integrity in the OptoLink system.
We operate within the 1500 − 1600 nm wavelength region and to
make sure there is no crosstalk and interference we have a channel
spacing of 0.5 nm. The gain of the TIA is set to 5kΩ.

One of the key benefits of OptoLink is its very low latency.
Transmission of data through a 1000µm waveguide incurs only
a 10ps delay, which is much lower than the 3.04ns required by
traditional electronic networks. This decrease in propagation time
is indicative of OptoLink’s better efficiency at high-speed applica-
tions. With this 10ps data transfer time, the data rate for a single
OptoLink channel is calculated at 100Gb/s or 12.5GB/s. Extending
this configuration to 128 channels yields an aggregate bandwidth of
1.6TB/s, thereby achieving the TB/s bandwidth necessary for FHE
operations as seen on Fig 2. In an 192-channel implementation,
OptoLink offers 2.4TB/s, on par with the NVIDIA A100 [34]. With
even further scaling, it is as much as 12.8TB/s with 1024 channels,
several orders of magnitude ahead of electrical networks, which can
barely achieve 42.1GB/s at the same bitwidth (Table II). Notably, to
achieve OptoLink’s 1.6TB/s bandwidth using electronic connections
would require a highly unrealistic 4864-bit data sequence. This rapid
data movement is critical to FHE workloads, lowering memory-to-
compute latency and eliminating bottlenecks.

B. Power Analysis

The power consumption of the OptoLink system is largely
determined by laser source and MRRs. To estimate the total power
consumption of the system, we used the following equation:

Ptotal = Plaser + PTX + PRX (5)
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where Plaser is the power dissipation of the laser source, and PTX

and PRX is the power dissipation of the transmitter and receiver
sections, respectively. According to the specified values, PTX and
PRX are estimated to be 0.9mW and 0.6mW per channel, respec-
tively [35]. The power consumption associated with the OptoLink
system, along with that of an electronic network system in various
configurations, is presented in Table III. For an OptoLink system
consisting of 128 channels connected in parallel to 4 NTT modules,
the estimated power consumption is around 3.91W . Each channel
in this configuration consists of 24 transmitters and receivers each,
which contributes significantly to the power consumption. The power
usage of the OptoLink system grows linearly with the number of NTT
cores, at 7.82W for 8 NTT cores and 15.63W for 16 NTT cores.
This is due to the higher number of transmitters and receivers per
channel required for larger number of NTT cores. Also for different
bitwidths, the number of OptoLink channels that operate in parallel
increases to accommodate data transmission through SDM, leading to
higher overall power consumption at larger bitwidths. In comparison,
the power consumed by the electronic network in facilitating data
transfer via 128-bit configurations utilizing 4, 8, and 16 NTT modules
is considerably low, at 336.99µW , 661.74µW , and 1332.31µW ,
respectively. This reduced power consumption is due to the absence
of devices utilized in the generation and processing of optical signals,
which are essential components of the OptoLink system. Table III also
provides further insights into systems’ power consumption configured
with 32-bit and 64-bit architectures, where the same trend can be
seen.

TABLE II
BITRATE COMPARISON OF ELECTRONIC NETWORK AND OptoLink

Electronic Network OptoLink
Bitwidth Latency Bitrate Latency Bitrate

32 3.04ns 1.32GB/s 10ps 0.4TB/s
64 3.04ns 2.63GB/s 10ps 0.8TB/s

128 3.04ns 5.26GB/s 10ps 1.6TB/s



TABLE III
POWER CONSUMPTION FOR ELECTRONIC NETWORK AND OPTOLINK

Bitwidth NTT Cores Power Consumption
Electronic Network (µW ) OptoLink (W )

32 4 283.89 1.07
8 562.44 2.12

16 1121.9 4.23
64 4 308.18 2.02

8 619.29 4.04
16 1232.19 8.09

128 4 336.99 3.91
8 661.74 7.82

16 1332.31 15.63

TABLE IV
POWER COMPARISON OF OptoLink IN DIFFERENT NTT STAGES FOR 16

NTT CORES. POWER SAVING IS MORE PROMINENT IN EARLIER STAGES.
NTT

Bitwidth Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
32 3.38 W 3.48 W 3.68 W 4.09 W 4.91 W
64 6.75 W 6.96 W 7.37 W 8.19 W 9.82 W
128 13.5 W 13.92 W 14.7 W 16.37 W 19.65 W

Table IV presents the power consumption of a 16-NTT core
architecture, calculated for different bitwidths and NTT stages. The
broadcasting operation of OptoLink achieves a noticeable reduction
in power consumption in Stage 1 as opposed to Stage 5. In particular,
Stage 1 has an average power consumption 31.2% lower than
that of Stage 5 demonstrating the power efficiency of optical data
broadcasting. The use of a shared data stream that is split among an
array of NTT modules results in fewer wavelengths being required,
which also lessens the number of lasers, transmitters, and receivers,
resulting to reduced total power consumption. Compared to larger
polynomial NTT operations, the energy efficiency is greatly improved
as more computations can be carried out with one broadcast, making
OptoLink a highly effective tool for large-scale FHE applications.

C. Area Analysis

The area requirements for the proposed OptoLink architecture
were evaluated by comparing the space occupied by conventional
electronic networks with that of the photonic components integral to
OptoLink. Using a 32nm technology library, we estimated the area
for the electronic networks, enabling precise measurement based on
realistic process design parameters. For a 128-bit NTT configuration,
the area requirements for electronic networks scale nearly linearly
with the number of NTT units. Specifically, configurations with 4,
8, and 16 NTT units occupied areas of 3097.3µm2, 5741.2µm2,
and 11861.9µm2, respectively. In contrast, OptoLink’s photonic
data transmission components necessitate a larger area due to the
photonic elements involved. Prior research suggests that each pho-
tonic transmitter or receiver occupies approximately 0.0096mm2 per
wavelength [36]. Critical to wavelength-selective modulation in our
architecture, MRRs add to the area requirements; with a typical MRR
radius of 5µm, the total area contribution from MRRs is estimated
to be around 0.01mm2 [37].

D. Evaluation metric (R) Analysis

A new evaluation metric was defined in Eq. 4 was created to guar-
antee fair assessment between OptoLink and the electronic network.
With a 32-bit channel using 4 NTT cores OptoLink produces an R
value reaching up to 3.79× 1022 but the electronic network stops at
1.53 × 1021. As shown in Fig. 9 OptoLink displays a superior effi-
ciency in high-bandwidth workload handling when compared to other
alternatives. The data shows OptoLink delivers better performance
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Fig. 9. Evaluation metric (R) comparison between electronic network and
Optolink for different number of NTT cores.

than the electronic network across every configuration because it gen-
erates superior R values throughout all tested NTT core amounts and
bitwidth values. OptoLink maintains superior performance because its
high bandwidth and minimal delay establishes an effective answer
for extensive FHE acceleration operations. Fig. 9 shows the results
which demonstrate that OptoLink outperforms traditional electronic
networks by providing superior scalability.
E. Discussion

The results refer to the high timing performance of OptoLink,
where 128 parallel photonic channels achieve 1.6TB/s, while elec-
tronic networks achieve just 5.26GB/s for the same bitwidth. This
ultra-low latency is highly desirable for FHE, reducing bottlenecks
and enabling high-speed data communication. The advantages come,
however, at the expense of higher power consumption. OptoLink’s
broadband capability saves power by minimizing redundant trans-
mission, which lowers power consumption by 31.2% at initial NTT
stages. This is especially useful with large polynomial operations as
data streams shared between NTT cores cut down on active optical
components. Despite the increased power requirements, OptoLink
obtains a better R value than an electronic network, demonstrating
its superior data transmission efficiency. The R value analysis shows
that OptoLink is consistently superior to electronic networks for
leveraging high throughput and low latency for large-scale high-
performance FHE acceleration. With these results, it is evident that
the questions posed in Sec. I regarding scalability, bandwidth, and
efficiency have been addressed, showing that OptoLink can be a
viable solution. For large-scale FHE workloads, these results make
OptoLink a viable alternative for existing electronic networks.

V. CONCLUSION

OptoLink resolves major issues in current FHE accelerators by
employing photonic interconnects. It can achieve picosecond latency,
which is much lower than that of electronic networks. Additionally,
due to the broadcast capability of OptoLink, the energy consumption
during initial NTT stages is lowered due to fewer numbers of wave-
lengths being used. OptoLink’s total bandwidth of 1.6 TB/s across 128
channels at 100 Gb/s per channel allows it to handle large ciphertexts.
Although photonic components introduce power and area overhead,
the R value of OptoLink is higher than of electronic networks. This
higher R value, showcases better performance. There is a lot of work
going on in recent times to develop power-efficient MRRs, which will
reduce the power consumption in future implementations. In short,
OptoLink is a scalable, high-speed and energy-efficient interconnect
solution for FHE accelerators. Future research will focus on further
optimizing power and area to enable it for practical next-generation
privacy-preserving computing.
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F. Lepin, S. Bernabé, S. Menezo, G. Parès et al., “A 10gb/s si-photonic transceiver
with 150µw 120µs-lock-time digitally supervised analog microring wavelength sta-
bilization for 1tb/s/mm 2 die-to-die optical networks,” in 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 2018, pp. 350–352.

[37] G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham,
and A. V. Krishnamoorthy, “40 gb/s thermally tunable cmos ring modulator,” in
The 9th International Conference on Group IV Photonics (GFP). IEEE, 2012, pp.
1–3.


