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Abstract— Myoelectric control has emerged as a com-
mon tool for human-machine interaction with applications
in prostheses, rehabilitation, and mixed reality. Despite
the growing research and promising results in controlled
laboratory settings, there are challenges to its widespread
adoption. During activities of daily living, factors such
as limb position, electrode shift, cross-day variability, and
individual differences reduce the reliability of controllers.
Moreover, most existing work to address these issues is
validated on individuals without limb differences, limiting
clinical generalizability. We posit that even in the presence
of these confounding factors, the intention of perform-
ing a specific gesture remains similar. Hence, a common
underlying dynamics of muscle activity could be leveraged
to create a robust myoelectric controller. Therefore, we
propose a one-shot learning framework based on Multi-set
Canonical Correlation Analysis to align the latent represen-
tation of the surface electromyography signals to achieve
reliable myoelectric control across limb positions, days,
and individuals with only minimal calibration data from
a new condition (i.e., limb position, day, or individual).
Importantly, we show that our framework generalizes from
individuals without limb differences to an individual with a
congenital limb difference despite different muscular phys-
iology. Therefore, our framework can eliminate the need
for retraining and data-hungry models, promoting plug-
and-play myoelectric control robust to variations in limb
position, day, and individual.

Index Terms— Electromyography, myoelectric control,
pattern recognition, machine learning, human–machine
interaction.
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I. INTRODUCTION

W ITH the advancement of wearable technologies, pros-
thetics, and mixed-reality environments, there is an

increasing demand for intuitive and natural human-machine
interaction (HMI) paradigms. Myoelectric control, which
translates electromyography (EMG) signals into actionable
commands, has extended beyond clinical prosthetics to broader
HMI applications, including robot control [1], [2], [3], game
interaction [4], rehabilitation [5], and mixed reality [6].

Surface EMG (sEMG) signals are commonly used to decode
movement intent and are considered well-suited for myoelec-
tric applications due to their non-invasive nature, compact
form factor, ability to capture subtle muscular activity, and
low power consumption [7], [8]. However, sEMG signals
are inherently variable and sensitive to external and physi-
ological factors such as perspiration, limb position, electrode
displacement, muscle fatigue, and individual anatomical and
behavioral differences [9], [10], [11], [12], [13]. Moreover,
prior studies demonstrated that even intramuscular EMG sig-
nals are susceptible to such variability [14]. These variabilities
due to the confounding factors introduce distributional shifts
in the EMG feature space, which degrade decoding reliability
and deteriorate generalization across limb positions, record-
ing days, and individuals. Consequently, despite promising
research results, real-world deployment of EMG-based control
systems remains limited without effective strategies to mitigate
non-stationarity. Changes in limb position and posture influ-
ence muscle shape and length, thereby affecting sEMG signals
and degrading decoding performance [9]. Moreover, muscle
activation patterns vary with the orientation of adjacent joints
in addition to the primary joints involved. Together, these
variations define the limb position effect, further compounding
the complexity of a robust myoelectric decoding [6], [15],
[16], [17]. Temporal factors further exacerbate the variabil-
ity in EMG signals. More specifically, muscle contractions
exhibit strong temporal dependencies, with activation patterns
influenced by prior states and evolving dynamically over time
[18]. Several strategies have been proposed to mitigate the
effects of limb position variability on myoelectric decoding
accuracy. For instance, Jiang et al. [6] developed an unsuper-
vised, self-calibrating random forest model adapted to varying
arm positions. Furthermore, Cheng et al. [19] proposed a
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position-independent canonical correlation analysis (CCA)-
based framework for classifying 13 hand gestures across three
limb positions, achieving an accuracy of 76.11% overall.

Temporal or cross-day variability adds an additional layer of
complexity. Changes in electrode placement, skin impedance,
or neuromuscular adaptation over time alter the distribu-
tion of sEMG features [20]. These disparities in feature
space between training and new recording sessions degrade
generalization and often necessitate frequent model retrain-
ing [21], [22], [23]. Recent efforts have aimed to improve
the robustness of myoelectric controllers across multiple
days. Jiang et al. [24] investigated cross-day stability by
evaluating 55 temporal–spectral–spatial features and opti-
mizing a Support Vector Machine (SVM) model, achieving
88.75% accuracy of 28 hand gestures. Botros et al. [21] and
Jiang et al. [25] further addressed cross-day variability through
feature optimization and channel interpolation techniques,
achieving decoding accuracies of 95.7% and 91.9%, respec-
tively. Shi et al. [26] evaluated eight unsupervised transfer
learning algorithms based on CNNs, and achieved a cross-
day average accuracy of 87.94% using CORrelation Alignment
(CORAL). Domenico et al. [27] investigated non-stationarities
in myocontrol over multiple days using incremental learning to
mitigate distribution shifts. Similarly, Jiang et al. [28] achieved
long-term robustness with a pretrained self-calibrating random
forest model that adapts to a new user with a single trial per
gesture and maintains accuracy gains over time.

Finally, individual differences introduce a significant dis-
tribution shift, driven by muscle anatomy, subcutaneous fat
distribution, movement strategies, and contraction force lev-
els [20], [29]. Prior studies have shown that variations in
force levels during gesture execution also impact the model
performance [18]. As a result, pre-trained models often
fail to generalize effectively to new users without exten-
sive calibration or model retraining. However, large-scale
datasets such as EMG-EPN612 [30] have enabled zero-shot
learning frameworks for intersubject generalization [31]. Yet,
these approaches often rely on computationally intensive
models ill-suited for real-time applications [32], [33], [34].
Zheng et al. [35] proposed an alternative approach by employ-
ing an adaptive K-nearest neighbor (KNN) algorithm for user
adaptation, reporting average recognition accuracies of 83.05%
across 4 hand gestures using double Myo armbands [36].

Alternative methods such as CCA have shown promise in
biomedical signal processing for identifying shared represen-
tations with low computational cost [12], [13], [19], [37].
CCA, first introduced by Hotelling in 1936 [38], is a statistical
method for identifying correlations between two multivari-
ate datasets. Xue et al. [12] designed a user-independent
myoelectric controller using CCA and domain adaptation,
achieving an average cross-subject classification accuracy of
78.15% on 13 hand gestures. Donati et al. [23] addressed
cross-day variability in sEMG by applying CCA to map
new-day recordings into the feature space of a reference
session. While effective for improving classifier stability across
days, this method is restricted to pairwise alignment and
does not account for limb position effect or cross-subject
differences.

In practice, most CCA-based myoelectric controllers rely
on aligning only two datasets at a time, often designating one
as an “expert”. This pairwise alignment strategy overlooks
the broader shared latent dynamics that may exist across
multiple datasets, limiting the ability to uncover a global
structure necessary for robust generalization. Although several
extensions of CCA have been proposed to support alignment
across multiple datasets [39], [40], [41], [42], [43], a unified
framework that can address variability due to limb position,
day-to-day differences, and individual users simultaneously
remains underexplored.

Additionally, generalizing models to individuals with upper
limb difference (ULD) is particularly challenging due to
different neuromuscular organization [44]. Nevertheless, most
existing work is validated on individuals without ULD (non-
ULD), leaving a gap in clinical translation.

To bridge these gaps, we employ Multi-set Canonical Cor-
relation Analysis (MCCA) [42] to jointly align sEMG signals
across positions, days, and individuals (including an individual
with ULD). By extracting a shared latent representation from
multiple datasets, our approach generalizes more effectively
across diverse acquisition scenarios, while requiring minimal
calibration. More specifically, we introduce a one-shot cali-
bration strategy that maps new recordings into the training
feature space, eliminating the need for model retraining while
reducing the effect of limb position, cross-day variability, and
cross-user variability on the accuracy of the controller. This
approach can be a significant step towards a plug-and-play
controller for HMI paradigms.

II. METHODS

We designed a series of controlled experiments to examine
the performance of our myoelectric control across conditions
with variabilities due to limb positions, acquisition days, and
individuals, including upper-limb differences. Our approach
leveraged MCCA [42] to extract shared latent representations
and obtain high classification accuracy with minimal calibra-
tion or re-training of the controller.

.A. Participants and Data Acquisition Setup
The dataset was collected from 18 non-ULD subjects and

one ULD subject (ages 18–36; 15 males, 4 females) across
five days. The study was approved by the University of Central
Florida’s Institutional Review Board (study 6576; Approved:
3/22/2024). All subjects provided informed consent before
taking part in the experiment.

We conducted the experiments using our developed open-
source system, the Common Arm Position Signal Acquisition
System (CAPSAS) [45], [46]. CAPSAS consists of 16 LED-
animated hexagons that provide real-time visual cues to guide
subjects. Each hexagon is equipped with an infrared (IR)
proximity sensor that detects when the subject’s hand reaches
the designated position. CAPSAS was used to label limb
positions and to implement an automated experimental control.
The automated control of trial initiation and progression in
CAPSAS eliminated experimenter interference and enabled
consistent, high-throughput data acquisition.
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Fig. 1. Experimental setup and task design. (A, B, C) CAPSAS
data acquisition system: the setup included 16 hexagonal modules,
each equipped with 12 LEDs for visual cueing and an infrared (IR)
proximity sensor for trial triggering and timestamping. Muscle activ-
ity was recorded using an 8-channel OYMotion gForce+ armband.
(D, E) Task protocol: subjects performed five hand gestures: hand open,
hand closed, wrist extension, wrist flexion, and rest; object-grasping
tasks were executed using 3D-printed objects: pencil, card, and cup.
The experiment consisted of five sessions across three task modes:
two static, two dynamic, and one object-grasp session. In static mode,
gestures were held at a specific position for five seconds. In dynamic
and object-grasp sessions, tasks followed a structured sequence: (3s
hold → 3s move → 3s hold). All tasks were cued automatically using
CAPSAS LED animations.

Each subject performed the experiments standing at a stan-
dardized reference position in front of the CAPSAS system,
based on their anthropometric measurements. The device
height was adjusted so that the arm was raised to 90◦, the hand
aligned with the center of the device (red button in Figure 1)
to reach the most proximal targets without stepping forward.

Trials were self-initiated, and subjects could proceed at their
own pace without a fixed inter-trial interval. A 5-minute break
was given after a fixed number of trials (depending on the
mode of the experiment; see below) to prevent fatigue. sEMG
signals were recorded using an 8-channel OYMotion gFor-
cePro+ armband (12-bit resolution) positioned approximately
4 cm below the elbow on the dominant arm for non-ULD
subjects, and on the residual forearm distal to the elbow for
the ULD subject. We maintained consistency of the armband
orientation across the subjects by aligning its on/off button
oriented laterally when the participant was in the anatomical
position. A 3D-printed extension socket was fabricated based
on a personalized 3D scan and measurements for the ULD
subject. When attached to the residual limb, the socket simu-
lated the weight loading and inertial properties associated with
operating a prosthetic hand. Data were acquired at a sampling
rate of 500 Hz and synchronized using Lab Streaming Layer
(LSL) [47].

Each non-ULD subject performed all three experimental
modes (i.e., static, dynamic, object; see below), whereas the
ULD subject completed static and dynamic modes.

Static mode: Non-ULD subjects performed one of five
hand gestures (hand open, hand closed, wrist flexion, wrist
extension, and rest), whereas the ULD subject performed three
gestures (hand open, hand close, rest) (Figure 1). Each gesture

was held for 5 seconds at a position indicated by CAPSAS
and performed three times per arm position, resulting in 240
randomized trials per session for non-ULD subjects and 144
trials for the ULD subject. There were two sessions of static
mode across two different days.

Dynamic mode: Subjects executed the same hand gestures as
in static mode while transitioning between positions. The start
and end positions were instructed automatically by CAPSAS.
Each trial was structured as follows: 3 seconds hold at the start
position → 3 seconds movement → 3 seconds hold at the end
position. For timekeeping, CAPSAS changed the LEDs’ color
to indicate the remaining time during the 3-second movements.
The subjects were familiarized with the task and the meanings
of the LED colors in a practice session prior to the experiment.
Each session included 180 trials for non-ULD subjects and
108 for the ULD subject, comprising 12 ordered transitions
among four possible positions, with each transition repeated
three times per gesture. Similar to static mode, there were two
sessions of dynamic mode across two different days.

Object mode: Due to the modular design of the CAPSAS,
we could study the grasp and movement of real-life objects.
We used three 3D printed objects: pen, card, and cup. Similar
to the dynamic mode, the start and end positions for each
object grasp were instructed automatically by CAPSAS. Each
trial was also similar to the dynamic mode, but with grasping
objects. That is, the subject grasped the object and held it at
the starting position for 3 seconds → 3 seconds movement
→ 3 seconds hold at the end position, and replaced the object
at that position. Each session included 216 trials, consisting
of 12 ordered transitions among four possible positions, with
each transition repeated six times for each object. There was
only one session of the object mode.

.B. EMG Signal Processing and Feature Engineering
Raw sEMG signals were recorded using the Oymotion

gForce+ armband, which includes an onboard hardware band-
pass filter (20 − 500Hz). Recordings were segmented into
individual trials based on the IR sensor time stamps. For each
session, the segmented sEMG data were structured according
to the experiment mode: static (240 × 2500 × 8), dynamic
(180×4500×8), and object grasp (216×4500×8), where each
matrix follows the format (trials ×time samples× channels).
In dynamic sessions, only the 3-second movement period was
retained, resulting in a reduced matrix of size (180×1500×8).

Each trial was divided into non-overlapping windows of 125
samples (250ms). Five time-domain features were extracted
from each window and channel: mean absolute value (MAV),
variance, waveform length (WL), zero crossings (ZC), and
slope sign change (SSC) [6], [48], [49], [50]. We excluded the
final window for each trial to eliminate artifacts caused by the
next phase of the trial. After feature extraction, the resulting
data matrices are structured as (trials ×windows× features),
where the feature vector has a length of 40 (5 features × 8
channels).

.C. Visual Feedback Online Training
The participant with ULD was congenital, which made

performing the set of five hand gestures (hand open, hand
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close, wrist extension, wrist flexion, and rest) unintuitive,
as they reported that they had never tried performing all
those gestures with their impacted limb before. Therefore,
we adapted the protocol to three gestures: hand open, hand
close, and rest. Furthermore, upon receiving feedback from
the participant that they require training time to reliably
perform the three gestures, we developed a real-time visual
training framework. Prior research has shown that decoder
training, combined with targeted user feedback, enhances
pattern separability through decoder-informed motor training
and promotes motor skill retention through biofeedback [44],
[51]. The participant followed randomized on-screen visual
cues prompting each of the gestures (open, close, rest). For
each cue, the participant performed three trials of 5 seconds
with 6-second rest intervals, while moving the arm randomly.
The participant was instructed to attempt the gestures with
the residual limb in the same manner as with the intact con-
tralateral limb to support motor imagery and control. A linear
discriminant analysis (LDA) classifier was then trained on the
recorded data to create the gesture-specific decision boundaries
in the sEMG feature space. The participant received real-time
feedback during training by visualizing the position of their
sEMG features relative to the classifier boundaries.

.D. Latent Representation Alignment via MCCA

We employed MCCA [42], [52] to address sEMG variability
caused by changes in limb position, cross-day variability, and
individual differences. The pre-processed sEMG data for each
subject, day, or position is denoted as Xn ∈ R

T×d, where
n ∈ 1, 2, . . . ,N, d is the number of features, and T is the
number of datapoints from all concatenated trials. First, we
concatenated the N datasets along the feature dimension to
construct a global matrix:

X = [X1 | X2 | · · · | XN] ∈ RT×D (1)

where D = N×d. We then computed the global block-diagonal
covariance matrix C ∈ RD×D which captures both within- and
between-dataset covariances. Each block diagonal of C was
then individually whitened using principal component analysis
(PCA), forming a block-diagonal whitening matrix X̃ ∈ RD×D,
which was then used to whiten the global covariance matrix:

C̃ = X̃>CX̃ ∈ RD×D (2)

ensuring that all within-dataset covariances are decorrelated
and scaled to unit variance, while the cross-dataset covariance
structure was preserved. A second PCA was then applied to
C̃ to extract dominant directions shared across datasets. We
retained the top d◦ components to preserve only those patterns
with the highest shared latent structure, yielding a projection
matrix V̂ ∈ RD×d◦ . The final global transformation matrix was
constructed as:

V = X̃V̂ ∈ RD×d◦ (3)

which was used to project X into a common low-dimensional
space that maximally captures the shared structure across
the datasets. Additionally, dataset-specific transforms were

obtained by partitioning V into N dataset-specific blocks:

V =

26664
V1
V2
...

VN

37775 , Vn ∈ R
d×d◦ , n = 1 : N (4)

Each dataset was then projected into the shared latent space
using its corresponding transformation:

Yn = XnVn ∈ R
T×d◦ (5)

The number of retained components (hereafter referred to
interchangeably as Canonical Correlates, CCs) is estimated
from the Summary Components (SCs), which are given by
the columns of the projected data Y = XV . The leading SCs
represent temporal patterns that capture most of the correlation
across the data matrices Xn. The variance of these SCs ranges
from 1 (no correlation) to N (perfect correlation across all N
datasets), providing the basis for selecting a range of CCs.
The optimal CC is determined by maximizing the decoding
accuracy (Figure 4).

Plug-and-play functionality was achieved by estimating
transformation matrices using one trial per gesture from a
new condition (i.e., different limb position, day, or user).
We constructed a calibration matrix of dimensions T × d by
temporally repeating each trial to match the length of the
reference dataset, ensuring both dimensional consistency and
class correspondence required for alignment. This one-shot
calibration aligned the acquired data in the new condition with
a pre-trained model by mapping the new data into the reference
feature space using the following equation [23]:

X̂test = XtestVtestV
†

ref ∈ R
T×d (6)

where † denotes the Moore–Penrose pseudo-inverse, and X̂test

is the projection of newly acquired data in the space spanned
by features of training reference data.

.E. Evaluation Framework

We evaluated classification accuracy under varying sEMG
conditions using three strategies:
• Baseline: We established a performance baseline using an

SVM model trained and tested using unaligned features.
• Aligned: We assessed how alignment affects decoding

accuracy by projecting the reference and new data into a
shared latent space using MCCA, in which training and
classification occur (Figure 2).

• Mapped: New data are projected into the shared latent
space, then mapped back into the reference feature
space, and classified using the pretrained Baseline model,
enabling one-shot learning (Figures 2, 3).

These strategies are applied across all alignment scenarios:
cross-arm position, cross-day, and cross-subject.

1) Within-Session Alignment Across Arm Positions: The
limb position effect is a major factor in degrading sEMG
decoding performance. We investigated whether aligning latent
representations of sEMG across different limb positions can
uncover similar patterns of activity for different hand gestures.
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Fig. 2. Schematic of the alignment framework. sEMG signals were
recorded from two subjects as they performed the same object tasks
(e.g., holding a cup, pen, or card). Raw signals were transformed
through feature extraction into high-dimensional feature spaces, which
differed across individuals due to anatomical and physiological variabil-
ity. Dimensionality reduction was then applied to project each subject’s
data into a lower-dimensional latent space, where class structure
remained misaligned across subjects. Both subjects’ data were pro-
jected into a shared latent space using MCCA, revealing shared latent
representation across subjects. Alternatively, the test subject’s data can
be mapped directly into the reference subject’s feature space for clas-
sification using a pretrained model on the reference data. The scatter
plots illustrate the latent spaces before and after alignment, showing
how data with distinct individual-specific structures can be projected
into a common space that preserves class separability while minimizing
cross-subject variability.

For these analyses, we only used the static mode sessions
to minimize the impact of motion. Each session was pre-
processed and arranged into a matrix of shape (240, 19, 40)
(Section II-B). We reshaped the session data into a position-
wise structure (16, 285, 40), corresponding to (positions
×windows× features). Within each session,

�16
2

�
position pairs

were then evaluated. For each pair, the first position served as
the reference (training) and the second as the test. Notably, one
session from subjects 18 and 8 was excluded due to technical
issues with Bluetooth connectivity. The transformation matrix
was derived by applying MCCA to the reference and cali-
bration data (one trial per gesture). Moreover, we compared
classification performance across the three strategies: Baseline,
Aligned, and Mapped.

Fig. 3. Block diagram comparing the proposed plug-and-play (i.e.,
Mapped) strategy (black lines) with the Baseline strategy (red lines).
Note that the model training in the Mapped strategy is a one-time effort,
and no retraining is needed for test data. Calibration data is one trial per
gesture from the test subject.

Fig. 4. An example of the effect of the number of Canonical Correlates
(CCs) on decoding accuracy across different strategies. Classification
accuracy is plotted as a function of the number of retained components
for three evaluation strategies: (1) Baseline: the model is trained on
session 1 (reference data) and evaluated on session 2 (test data) in
their original feature space without alignment (blue); (2) Aligned: both
reference and test data are projected into a shared latent space using
MCCA, and classification is performed in this space (blue); (3) Mapped:
test data are projected into the feature space of the reference data and
classified using the Baseline model (green). Each curve shows mean
accuracy across subjects; shaded areas denote standard deviation. ( )
indicates the number of components selected for each strategy based
on SC variance and statistical significance. Only one trial per gesture
from the test session was used to estimate the MCCA transformation.

(1) Baseline (Unaligned Feature Space): An S V MBaseline
classifier with radial basis function (RBF) kernel and a regu-
larization parameter of C = 1.0 was trained on the full feature
matrix of the reference position and tested directly on the
features of the test position, without any alignment.

(2) Aligned (Shared Latent Space): The reference and test
datasets were aligned and projected into the shared latent space
using the derived transformation matrix, using only the top 5
components for non-ULD subjects, and 3 for the ULD subject.
The classifier, S V MAligned, was then trained on the aligned
reference dataset and tested on the aligned new dataset within
the shared latent space.

(3) Mapped (Reference Space): The test dataset was aligned
with the reference dataset, projected into the shared latent
space using the top 27 components for non-ULD subjects, and
29 for the ULD subject, and mapped back into the reference
feature space using the pseudo-inverse of the reference
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transformation matrix (Equation 6). The pretrained
S V MBaseline was then used to classify the mapped test
dataset without retraining.

2) Within-Subject Cross-Day Alignment: Day-to-day vari-
ability in EMG signals is a critical complication for reliable
myoelectric decoding. We evaluated whether the alignment
framework can uncover consistent muscle activation patterns
across days, using static sessions from 17 subjects (subject 18
was excluded due to technical issues) and dynamic sessions
from 16 subjects (subjects 7 and 9 were excluded due to
technical issues). For each subject, the first session was used
as the reference (training) dataset and the second as the test
dataset. As outlined in Section II-D, the calibration matrix
was constructed using one trial per gesture from the test
dataset (∼ 2% of the data) and was then used to derive
MCCA transformation matrix. We adopted the same Baseline,
Aligned, and Mapped strategies as described in the previous
subsection (Section II-E.1), with the only difference being
the number of retained components. For non-ULD subjects,
5 components were retained for Aligned across both static
and dynamic sessions, with 27 and 28 retained for Mapped
in static and dynamic, respectively. In contrast, for the ULD
subject, static sessions retained 3 components for Aligned and
26 for Mapped, whereas dynamic sessions retained 4 and 28.

3) Cross-Subject Alignment: Cross-subject variability
presents a significant challenge for generalizable sEMG-based
classification. To assess whether shared muscle activation
patterns exist across subjects, we performed a cross-subject
analysis using static and dynamic sessions separately. Each
subject was iteratively selected as the reference, and the
remaining subjects formed the test set. At each iteration, one
additional subject (both sessions) was incrementally added
to the training set, and evaluation was performed on the
updated test set. This process continued until only one subject
remained in the test pool. The inclusion of the training
subjects was randomized in each iteration. This incremental
approach assessed the robustness and scalability of the model.
In particular, it allowed us to examine whether the alignment
method can capture enough shared structure from a limited
training set to generalize to unseen subjects, and analyze how
adding more subjects to the training set impacts alignment
performance and classification accuracy.

The calibration matrix was constructed using one trial per
gesture from each test dataset, as described in Section II-D.
For both projection into the shared latent space and inverse
mapping to the reference space, 5 components were retained
for analyses limited to non-ULD subjects. For analyses involv-
ing the ULD subject, the same incremental learning procedure
was applied, with the test set being solely the ULD subject. In
the ULD case, Aligned retained 3 components in both static
and dynamic modes, while Mapped retained 28 components
in static mode and 29 in dynamic mode. Performance was
evaluated using the Baseline, Aligned, and Mapped strategies:

(1) Baseline (Unaligned Feature Space): An SVM classifier
was trained on the training dataset features and evaluated on
the test dataset features, without alignment.

(2) Aligned (Shared Latent Space): The calibration and
training datasets were used to obtain the transformation matrix
through MCCA. Both training and test datasets were then

projected into the shared latent space, where the classifier was
trained and evaluated.

(3) Mapped (Reference Space): In this method, the ref-
erence denotes the reference subject, which also serves as
the initial training subject. Training subjects refer to those
incrementally added to the training set, while test datasets
correspond to the remaining subjects. The training subjects’
datasets were aligned and projected into the shared latent
space, then inverse-mapped into the reference subject’s feature
space, where the model was trained (Section II-D). The test
subject’s dataset was aligned with the reference subject’s data
using the calibration matrix, projected into the shared space,
and inverse-mapped into the reference feature space before
being classified using the pretrained model without retraining
(Figure 3).

4) Cross-Subject Alignment in Object-Grasp Tasks: We
extended our cross-subject analysis to object-grasp tasks to
evaluate alignment performance in a more complex and
dynamic motor control scenario. In our study, we selected
three everyday objects (cup, pen, and card) because each typ-
ically elicits a distinct and functional grasp shape commonly
used in daily life: power grasp, tripod grasp, and lateral grasp,
respectively. Importantly, we did not constrain participants
to perform a specific grasp shape for each object. Instead,
they were free to grasp the objects in their own natural way.
This was designed to decode the user’s intention to grasp the
object naturally and investigate the inter-subject variability in
muscle activation patterns in object-grasping tasks. Subject 4
was excluded from this analysis due to technical issues with
the collected data. We adopted the same incremental training
strategy described in the previous subsection (Section II-E.3).

.F. Statistical Analysis
Statistical analysis was performed in Python using the SciPy

and StatsModels libraries to compare classification accuracy
across the aforementioned strategies. First, the Shapiro–Wilk
test was used to evaluate the data’s normality. If the data
followed a normal distribution, a paired t-test was con-
ducted; otherwise, the Wilcoxon signed-rank test was used for
non-parametric comparison. All p-values were corrected for
multiple comparisons using the Bonferroni method. In addition
to significance testing, effect sizes were reported as Cohen’s
d for t-tests and rank-biserial correlation r for Wilcoxon tests.
We quantified class separability on the Riemannian manifold
of covariance matrices. Trial-wise covariance matrices were
estimated using Ledoit–Wolf regularization, class centers were
computed with the Fréchet mean, and geodesic distances
were evaluated using the Affine Invariant Riemannian (AIR)
distance. Intra-class distances were defined by the Centroid
Diameter Distance, and inter-class distances by the Centroid
Linkage Distance.

III. RESULTS

.A. MCCA Reveals Position-Invariant Muscle Activation
Patterns

The accuracy of hand gesture recognition using sEMG is
degraded when the same gesture is performed at a different
arm position from the one on which the decoder was trained.
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Fig. 5. MCCA alignment improves class clustering by reducing the
limb position effect. Visualization of sEMG features projected into a
two-dimensional t-SNE space from one session in static mode for all
16 arm positions. left: sEMG feature distribution before alignment in
the original feature space in static mode, where samples of the same
gesture appear scattered due to the influence of limb position on muscle
activity. right: sEMG feature distribution after MCCA alignment showing
clear clustered data illustrating that alignment mitigates position-induced
variability while preserving gesture-specific structure.

This phenomenon, known as the limb position effect, is
believed to be due to position-induced variability in muscle
coordination and, hence, different muscle activity patterns.
To confirm the existence of such an effect in our dataset,
we trained and tested an SVM classifier on the same arm
position and obtained a high decoding accuracy for both
non-ULD (90.151% ± 9.413) and ULD (91.588% ± 7.674)
groups. In contrast, when we trained the classifier on one
arm position and tested on another, the accuracy dropped
to 80.160% ± 15.546 and 85.210% ± 11.809, respectively.
This 7-10% reduction in performance highlights the impact
of the limb position effect on decoding accuracy in both
groups and motivates the need for position-invariant strategies.
Building on this observation, we hypothesized that there exists
a shared latent structure that underlies each gesture regardless
of limb position and that alignment through MCCA can unveil
these latent structures. To illustrate, we examined a session
in static mode, where gestures were performed at fixed limb
positions. The unaligned sEMG features were then projected
into a two-dimensional space using t-SNE. The visualization
revealed highly scattered gesture clusters across 16 arm posi-
tions pre-alignment (Figure 5, left). However, after MCCA
alignment, data exhibited a well-defined cluster distribution
(Figure 5, right), thereby potentially improving decoding
performance.

After visually observing that MCCA effectively captured
shared patterns across arm positions, we subsequently quanti-
fied its impact on classification accuracy across arm positions
using an SVM model. First, we assessed the model per-
formance of the Baseline strategy, followed by the Aligned
strategy (Figure 6A, G). For non-ULD subjects, we found
that the model trained in the shared latent space achieved an
8% increase in accuracy compared to the Baseline (Baseline:
mean ± std : 80.160% ± 15.546, Aligned: mean ± std :
88.212% ± 8.953, Wilcoxon signed-rank test: p ≈ 0.0, r =

0.637; Figure 6A). Importantly, a similar improvement was
observed for the ULD subject (Baseline: mean ± std :
85.210% ± 11.809, Aligned: mean ± std : 89.186% ± 8.570,
Wilcoxon signed-rank test: p = 5.712 × 10−14, r = 0.5264;

Figure 6G), confirming that the alignment framework gener-
alizes robustly to both non-ULD and ULD subjects.

Although we observed increased accuracy by projecting
both reference and test datasets to the shared latent space,
this technique requires retraining the classifier in this latent
space. This retraining causes a practical burden for activities
of daily living in which the arm positions can be held in an
infinite different positions. Therefore, we examined whether
the classifier trained on the reference arm position can be used
without retraining alongside the MCCA alignment strategy
to obtain a high classification accuracy for the test arm
position using the Mapped strategy (Section II-D). We found
that the Mapped strategy increased the accuracy by 2% on
average across all arm position combinations compared to the
Baseline strategy. This improvement was observed consistently
across both groups, non-ULD subjects (Baseline: mean± std :
80.160% ± 15.546, Mapped: mean ± std : 82.442% ± 12.843,
Wilcoxon signed-rank test: p = 3.996 × 10−18, r = 0.174;
Figure 6A), and the ULD subject (Baseline: mean ± std :
85.210% ± 11.809, Mapped: mean ± std : 87.220% ± 9.757,
Wilcoxon signed-rank test: p = 2.258 × 10−5, r = 0.3366;
Figure 6G). These analyses demonstrate the effectiveness of
MCCA in reducing the limb position effect as evidenced by
improved classification accuracy across different arm posi-
tions, both using Aligned and Mapped strategies.

.B. Alignment Compensating for Cross-Day EMG
Variability

We showed that aligning the latent representation of sEMG
features reduced the limb position effect. However, it is
unclear whether the same technique could be used to develop
robust classifiers across recording days where muscle activity
patterns can vary due to several factors such as electrode shift,
device adaptation, fatigue, or other neuromuscular changes. To
evaluate this, we analyzed two recording sessions of the same
subject to determine whether MCCA could find a strong shared
muscle activation pattern across different days. Our initial
analysis focused on static mode, where subjects performed the
same gesture for 5 seconds at fixed arm positions. To quantify
cross-day variability, we first trained and tested the model on
the same session, resulting in high within-session performance
with average accuracies of 90.081%±7.969 for the non-ULD
subjects and 90.967%±6.113 for the ULD subject. In contrast,
the Baseline model, trained on the first session and tested
on the second, achieved an accuracy of 56.143% ± 24.767
for non-ULD subjects (Figure 6B), and 65.278% for the
ULD subject, corresponding to degradations of 33.94% and
25.7%, respectively, caused by cross-day variability. There-
fore, we next applied alignment for cross-day data to examine
whether alignment can improve the accuracy across days.
We found that training the classifier in this shared latent
space significantly improved accuracy in non-ULD subjects
by 27.29% compared to the Baseline (Baseline: mean ± std :
56.143% ± 24.767, Aligned: mean ± std : 83.430% ± 11.505,
Wilcoxon signed-rank test: p = 9.156 × 10−5, r = 0.855;
Figure 6B). Similarly, for the ULD subject, accuracy improved
by 25% after alignment (Baseline: 65.278%, Aligned:
90.351%). Interestingly, these improvements nearly offset the
reductions observed in the initial cross-day variability test,
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Fig. 6. MCCA alignment improves EMG decoding across different experimental conditions with minimal calibration. Each panel shows classification
accuracy distributions under three evaluation strategies: Baseline (blue), Aligned (orange), and Mapped (green), following the notation introduced
in Figure 4. The MCCA transformation was estimated using one trial per gesture from the test set. (*) denotes statistically significant differences
(Bonferroni-corrected p < 0.05, using paired t-test or Wilcoxon signed-rank test). Dashed lines indicate the 25th, 50th (median), and 75th percentiles.
The first two rows show the non-ULD subject’s results, and the last row shows results for the congenital ULD subject. A, G) Within-session cross-
arm position classification under static mode, using arm position pairs where one arm position serves as the training (reference) and the other
as the test. B, D) Within-subject cross-days session alignment for static and dynamic modes, respectively; the first session is used for training
(reference) and the second for testing. C, E, F, H, I) Cross-subject classification in static, dynamic, and object-grasping modes, respectively, using
incremental subject alignment; Each subject is sequentially added to the reference set, and a new model is incrementally trained by adding aligned
subjects, reducing the test set until only one subject remains. In the ULD case, the same incremental training strategy was used, with ULD data as
the test set. Session modes referenced here are described in the task protocol (Figure 1B).

demonstrating that even minimal calibration data can sub-
stantially reduce the effect of cross-day recording variability
through alignment.

Similar to the analysis across arm positions, projecting the
cross-day data to the shared latent space requires retraining
the classifier, increasing the training burden. Therefore, we
examined whether the Mapped strategy would result in robust
classification across days. This approach yielded a 24.25%
improvement in classification accuracy compared to the Base-
line for non-ULD subjects (Baseline: mean± std : 56.143%±
24.767, Mapped: mean ± std : 80.396% ± 13.252, Wilcoxon
signed-rank test: p = 5.798 × 10−4, r = 0.798; Figure 6B),
and by 26% in the ULD subject (Baseline: 65.278%, Mapped:
91.338%). Beyond improving accuracy, the Mapped strategy
offers a practical advantage by enabling direct application
of pre-trained models, facilitating real-time implementation
without additional training.

Having demonstrated that alignment effectively captures
shared structure across days in static gestures for both ULD
and non-ULD subjects, we next evaluated its impact in
dynamic mode, where subjects performed the same gestures
while simultaneously moving their hands between positions.
Unlike the static sessions, where arm position remains fixed,
dynamic gestures introduce additional complexity due to
movement inconsistency across days. To confirm the effect
of cross-day variability in the dynamic mode, we trained and
tested an SVM classifier within the same day and compared
performance to the Baseline model, trained on day 1 and
tested on day 2. Non-ULD subjects achieved an accuracy of
94.271% ± 5.629, showing an increase of 35.97% compared
to the Baseline (mean ± std : 58.302% ± 25.708). Simi-
larly, the ULD subject achieved an accuracy of 81.019% ±
9.987, an increase of 27.58% compared to the Baseline
(53.439%).
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Fig. 7. Cross-subject alignment using MCCA enhances class-wise consistency. Data from a reference and test subject are shown in three spaces
to illustrate the effect of MCCA. Left two panels: PCA of the reference and test subjects’ feature spaces highlights class-specific structure and
cross-subject variability. Middle-right: In the shared latent space, data from both subjects are well-aligned with class clusters closely overlapping,
indicating strong class-wise correspondence. Rightmost: Test subject data mapped back to the reference subject’s feature space recovers a
structure closely resembling the reference distribution (the left panel), demonstrating effective mapping.

Despite the increased complexity during dynamic mode,
alignment remained highly effective. Projecting both train-
ing and test data into the shared latent space led to a
31.29% improvement over the Baseline for non-ULD subjects
(Baseline:mean±std : 58.302%±25.708, Aligned: mean±std :
89.590% ± 9.627, Wilcoxon signed-rank test: p = 3.052 ×
10−4, r = 0.840; Figure 6D), and a 15.15% improvement
compared to the Baseline for the ULD subject (Baseline:
53.439%, Aligned: 68.598%). Similarly, mapping test data
onto the reference feature space that removes the need to
retrain a classifier improved accuracy by 26.62% for non-ULD
subjects (Baseline:mean ± std : 58.302% ± 25.708, Mapped:
mean ± std : 84.921% ± 13.147, t-test: p = 6.487 × 10−4, d =

1.159; Figure 6D), and by 6% for the ULD subject (Baseline:
53.439%, Mapped: 59.444%). Notably, this advantage was not
dependent on the order of days, as we achieved similar levels
of accuracy if the second day was used as the reference instead
(data not shown).

.C. Mitigating Cross-Subject Differences in EMG
Characteristics

Now that we have established that alignment of muscle
activity latent representation effectively mitigates both limb
position effect and cross-days variability, we next investigated
whether this approach could also reduce the effect of indi-
vidual differences and enhance cross-subject generalization.
In particular, we wanted to assess whether a classifier trained
on non-ULD subjects could generalize to the ULD subject,
a challenging case given substantial differences in muscular
physiology and activation patterns. Notably, for non-ULD
subjects, intra-subject classification achieved high accuracy
in both static (89.717% ± 6.977) and dynamic (92.733% ±
7.435) modes, compared to cross-subject classification, which
reached only (57.913% ± 7.885) in static and (58.302% ±
25.708) in dynamic mode. For the ULD subject, intra-subject
accuracy was 90.14% (static) and 78.043% (dynamic). In con-
trast, training the classifier on non-ULD subjects and testing
on the ULD subject reduced accuracy to 61.795% ± 3.382 in
static and to 54.699%±3.647 in dynamic mode. This reduction
in decoding accuracy reflects the inter-subject variabilities.

To better understand the impact of alignment on cross-
subject generalization, we aligned the static-mode data from

two non-ULD subjects and projected them into a shared latent
space. As shown in Figure 7, the 3D visualization reveals
the relative geometry of the two subjects and illustrates how
alignment reduces inter-subject discrepancies. The test and
reference subjects exhibited distinct class-specific distributions
in their original feature space. After alignment, however,
the data from both subjects became highly correlated, with
considerable overlap in class distributions. Furthermore, when
mapping the test subject data from the shared space back
into the reference subject’s feature space, the test data closely
resembled that of the reference subject. Quantitative analysis
substantiated the visual trends in Figure 7. We compared
cross-subject intra-class and inter-class Riemannian distances
(Section II-F) before and after mapping to the reference space.
Our analysis revealed that mapping the test subject into the
reference space reduced within-class spread by 78% (dintra :
7.06 → 1.56), while preserving relatively large between-
class separation (dinter : 15.52 → 9.94), thereby enhancing
overall class discriminability. We next evaluated whether
this effect would hold if the test subject was an individual
with ULD. We found that after mapping the ULD subject
to the non-ULD subject feature space, within-class spread
slightly decreased (dintra : 2.55 → 2.3), while between-class
separation nearly doubled (dinter : 7.5 → 13.08). Together,
these results indicate that the Mapped strategy reduces cross-
subject variability and results in more compact, well-separated
clusters, even when subjects differ substantially in muscular
physiology.

The same strategy also showed promising results for the
dynamic mode. More specifically, two subjects were chosen
to examine how their sEMG pattern activity evolved over time
in their feature space as the arm was moving. Figure 8 depicts
the resulting temporal trajectories for each hand gesture before
and after alignment. The aligned trajectories showed reduced
subject-specific variability while preserving the temporal struc-
ture of each gesture.

To quantitatively evaluate the cross-subject alignment effect
on hand gesture recognition, we applied the incremen-
tal learning approach (Section II-E.3). We then compared
classifier performance across the three aforementioned strate-
gies: Baseline, Aligned, and Mapped. In the static mode,
cross-subject alignment using both Aligned and Mapped
strategies showed an increase in classification accuracy com-
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Fig. 8. Three-dimensional representation of the muscle activity latent dynamics for two subjects in dynamic mode before and after alignment with
MCCA. ( ) indicates the start of movement, and (•) indicates the end of movement while performing a gesture. PCA was used to capture the latent
dynamics of movement execution, followed by MCCA for spatial alignment. Each trajectory reflects the temporal evolution of EMG features during
hand gestures as the subject’s arm transitions between positions, averaged across trials. Before alignment (left), distinct subject-specific variability
is evident. After alignment (right), the gesture trajectories across subjects are well-aligned, demonstrating a reduction in cross-subject variability
while maintaining the underlying temporal dynamics of the gestures.

pared to the Baseline. More specifically, for non-ULD subjects,
the model trained in shared latent space increased accuracy
by 28.09% compared to the Baseline (Baseline: mean ± std :
57.913% ± 7.885, Aligned: mean ± std : 86.003% ± 3.113,
Wilcoxon signed-rank test: p ≈ 0.0, r = 0.867; Figure 6C).
Importantly, alignment also improved cross-subject generaliza-
tion from non-ULD subjects to the ULD subject by a 23.8%
accuracy increase (Baseline: mean ± std : 61.795% ± 3.382,
Aligned: mean± std : 85.675%±1.638, Wilcoxon signed-rank
test: p ≈ 0.0, r = 0.867; Figure 6H).

Furthermore, the Mapped strategy increased accuracy for
non-ULD subjects by 23.708% (Baseline: mean ± std :
57.913% ± 7.885, Mapped: mean ± std : 81.621% ±
9.845, Wilcoxon signed-rank test: p ≈ 0.0, r = 0.835;
Figure 6C). Notably, the model pre-trained on non-ULD
subjects generalized well to the ULD subject, increasing
accuracy by 20.1% (Baseline: mean ± std : 61.795% ± 3.382,
Mapped: mean ± std : 81.932% ± 3.030, Wilcoxon signed-
rank test: p ≈ 0.0, r = 0.867; Figure 6H). Although both
strategies significantly improved decoding, Aligned accuracy
was 4.38% and 3.8% higher than Mapped for non-ULD
and ULD subjects, respectively. Nevertheless, as previously
noted, mapping back the test subject data to the reference
subject feature space eliminates the need to retrain the
classifier.

In the dynamic mode, without alignment (i.e., Baseline
strategy), the classification accuracy was 63.446% ± 8.550
for non-ULD subjects and 54.699% ± 3.647 for ULD. How-
ever, aligning training and test data in a shared latent space
significantly improved the mean accuracy by 25.55% for non-
ULD subjects (Baseline: mean ± std : 63.446% ± 8.550,
Aligned: mean ± std : 88.997% ± 3.166, Wilcoxon signed-
rank test: p ≈ 0.0, r = 0.867; Figure 6E), and by 23.04%
for ULD (Baseline: mean ± std : 54.699% ± 3.647, Aligned:
mean ± std : 77.743% ± 1.488, Wilcoxon signed-rank test:
p ≈ 0.0, r = 0.867; Figure 6I). The reduction in standard
deviation indicated reduced variability across subjects. Impor-
tantly, projecting test data directly into the reference subject’s
feature space achieved a comparable accuracy 88.982% for
non-ULD subjects, though with higher variability (Aligned:
mean ± std : 88.997% ± 3.166, Mapped: mean ± std :
88.982% ± 10.484, Wilcoxon signed-rank test: p = 4.365 ×

10−16, r = 0.472; Figure 6E). The Mapped strategy also
improved Baseline model accuracy by 19.7% when tested on
the ULD subject (Baseline: mean ± std : 54.699% ± 3.647,
Mapped: mean± std : 74.399%±2.521, Wilcoxon signed-rank
test: p ≈ 0.0, r = 0.867; Figure 6I). Collectively, these results
establish MCCA-based alignment as a powerful approach for
cross-subject generalization, supporting accurate and reliable
decoding of dynamic sEMG signals despite pronounced inter-
subject heterogeneity, movement, and recording variability.

.D. Reducing Cross-Subject Variability in
Object-Grasping Tasks

Having validated that alignment of sEMG latent space repre-
sentations effectively reduced variability across limb positions,
days, and subjects, we next investigated whether this approach
could generalize to a more complex and naturalistic motor
task: real-life object grasping during dynamic motion in which
the participants are allowed to choose their preferred grasp.
This is critical for developing intuitive myoelectric control,
where the goal is to decode grasp intention despite individual
differences in hand–object interaction, as both object proper-
ties and user grasp intention influence the hand shape. Indeed,
subjects showed individual differences even for grasping sim-
ilar objects. More specifically, when the model was trained
and tested within the same subject, it achieved an average
accuracy of 82.579%± 9.683. However, accuracy dropped by
46.2% when tested on a different subject.

Therefore, we assessed whether MCCA-based alignment
could uncover shared representations across non-ULD subjects
performing an object-grasping task while moving between
positions. We found that training on the aligned latent repre-
sentations in the shared space led to a substantial improvement
in classification accuracy compared to the Baseline strategy,
with an average accuracy increase of 33.4% (Baseline: mean±
std : 36.409%±3.429, Aligned: mean±std : 69.817%±5.448,
Wilcoxon signed-rank test: p ≈ 0.0, r = 0.867; Figure 6F).

Furthermore, mapping the test subject data into the training
subject’s feature space also improved performance, yielding
a 12.08% increase in accuracy (Baseline: mean ± std :
36.409% ± 3.429, Mapped: mean ± std : 48.491% ± 14.561,
Wilcoxon signed-rank test: p = 3.08 × 10−24, r = 0.620;
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Figure 6F). While both alignment strategies enhanced general-
ization, training in the shared space resulted in a significantly
larger and more consistent improvement across subjects. How-
ever, regardless of the strategy, the lower overall accuracy
across both strategies highlights the difficulties in decoding
more naturalistic grasps.

IV. DISCUSSION

We evaluated our proposed alignment-based framework
across three settings: cross-arm position, cross-day, and cross-
user. These evaluation scenarios reflect the primary sources of
variability in sEMG signals, including the limb position effect,
temporal variability such as electrode shift, and individual
differences [53]. We aimed to uncover an underlying shared
structure preserved across these factors through alignment
using MCCA [52].

Our results demonstrate that using a single trial per gesture
for calibration, alignment using MCCA consistently improved
classification accuracy of 5 hand gestures across 16 arm posi-
tions, recording days, and subjects (including ULD subject),
and for 3 object-grasping tasks across subjects (Figure 6).

We first analyzed the impact of alignment on reducing the
limb position effect and found that alignment-based strate-
gies increased the accuracy, suggesting that MCCA identified
a position-invariant structure that preserves gesture-relevant
muscle activity. Similar results were reported by Cheng et al.
[19], who observed a substantial 44.19% increase in accuracy
using CCA to reduce the limb position effect. These results
reinforce the hypothesis that limb position primarily modu-
lates muscle recruitment patterns, rather than the underlying
movement intent, as demonstrated by the improvement in
accuracy using alignment. Therefore, aligning sEMG signals
across limb positions recovers a shared representation of motor
intent that is resilient to biomechanical variations.

Next, we evaluated alignment across recording days, which
introduces temporal variability such as electrode shift. In both
static and dynamic sessions, MCCA significantly improved
classification accuracy, compensating for electrode shifts and
temporal perturbations that occur across days. Our findings
are consistent with those of Donati et al. [23], who reported
a within-subject average accuracy of 95% when generalizing
an SVM model trained on Day 1 recordings to new sessions
collected over a 10-day period using two trials per gesture
for calibration. In their study, electrode placement was not
controlled, which supports our hypothesis that alignment can
reduce the impact of electrode shifts. However, their reported
accuracy is 14.6% higher than ours (80.4%), possibly due to
the added complexity in our experiment, including 16 arm
positions (as opposed to no arm position variations) and the
use of only one calibration trial (as opposed to two) per
gesture.

We further investigated whether alignment could reduce
cross-subject variability in muscle activation patterns and gen-
eralize to a participant with a congenital limb difference. Our
results indicated that alignment substantially improved cross-
subject generalization. These findings align with related work
by Xue et al. [12], who applied CCA and reported a 39.73%
increase in accuracy, reaching 69.66%, and further improved

performance to 78.15% using domain adaptation. Wang et al.
[13] combined Discriminative CCA (DCCA) with Adaptive
Dimensionality Reduction (ADR) to classify 12 upper-limb
movements across 8 subjects, achieving 90.52% accuracy.
Although their reported accuracy exceeds ours by 9% in static
mode and 1.6% in dynamic mode, this gap might be due
to the differences in the evaluation setup. Their method used
pairwise alignment and retrained a classifier for each test–train
subject pair. In contrast, our framework aligns all subjects into
a reference space, eliminating the need for retraining when
adapting to new subjects.

Moreover, while most existing cross-subject decoding stud-
ies rely on deep neural networks or large-scale datasets
[31], [54], our approach achieves generalization using only
a single calibration trial per class by leveraging statistical
alignment via MCCA and a pre-trained linear SVM clas-
sifier. Furthermore, our analysis revealed that data from as
few as four subjects was sufficient to reach robust decoding
performance (Baseline: mean ± std : 55.1% ± 2.1, Mapped:
mean ± std : 84.6% ± 1.6). Together, these findings support
the effectiveness of alignment in improving cross-subject
decoding and suggest that aligning the latent structure of
muscle activity can compensate for individual anatomical
and physiological differences. Furthermore, we extended our
analysis to generalize models trained on non-ULD participants
to a participant with a congenital limb difference. Despite
the likely recruitment of different muscle groups, alignment
improved decoding accuracy by ≈ 20% in both static and
dynamic modes. To our knowledge, this is one of the first
demonstrations that a single trial per gesture can restore con-
trol performance in a congenital limb-difference participant to
near non-ULD levels. Notably, the optimal components for the
ULD participant differed from those without ULD. This dif-
ference may be attributable to differences in kinesthetic motor
imagery when attempting gestures with a limb never possessed
[55], [56].

Interestingly, decoding accuracy was consistently higher
in the dynamic mode than in the static mode for non-ULD
subjects. This finding is consistent with our earlier work [45],
where we demonstrated that dynamic training is advanta-
geous when the device is expected to operate predominantly
under movement. Moreover, Radmand et al. [57] reported
that dynamic training is as robust to limb position effects
as training across multiple positions. In contrast, the ULD
participant showed lower accuracy in the dynamic mode,
which may be attributable to increased fatigue and the greater
difficulty of performing the task, as reported by the participant.

Notably, because our analyses were restricted to within-
mode evaluations, differences in trial count did not bias
the reported results. However, cross-mode analyses must be
bounded by both the number of trials and the positions
included [45].

Finally, we validated our method on the object-grasping
task across subjects. This task posed the highest level of com-
plexity due to the combined effects of individual differences
and additional variability introduced by arm movement, as
each object was grasped and moved across multiple posi-
tions. Our results showed an average accuracy of 48.5%
when using one-shot calibration for a pretrained model,
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indicating difficulties decoding the object grasp intention.
This is comparable to related work from Le et al. [22],
who reported cross-day accuracies of 61% and 60% for
large diameter (cup) and tripod (pen) grasps, respectively,
when training and testing were conducted in the same arm
position and within the same subject. One possible expla-
nation for the poor generalizability in the object-grasping
task is the heterogeneous muscle activation patterns from
individual grasping techniques, suggesting that MCCA was
likely unable to extract a sufficiently shared structure due
to high cross-subject variability. Moreover, performance drop
may be partially attributed to using non-standardized grasp-
ing instructions during our data collection, as the task was
designed to preserve natural individual differences. Indeed,
prior studies showed significant variability of individuals
grasping objects differently, particularly for objects like
pens [58].

Overall, our findings suggest that MCCA can extract high-
level motor representations that persist across different arm
positions, days, and subjects. Given the hierarchical nature of
motor control, where sEMG activity reflects upstream neural
commands, this shared representation may capture a common
motor intent modulated by biomechanical and physiological
factors. Similar patterns have been observed in electroen-
cephalogram (EEG) studies, where shared latent dynamics are
preserved across time and individuals [59], [60]. We hypoth-
esize that sEMG signals may similarly encode an invariant
structure, with observed variations reflecting how the under-
lying motor intention is adapted to different musculoskeletal
configurations.

Notably, we observed that most task-relevant information is
retained in just the top 5 CCs, suggesting that the underlying
structure resides within a compact low-dimensional manifold,
facilitating real-time inference while supporting model inter-
pretability. In contrast, reconstructing the sEMG feature space
using the Mapped strategy needed more components to retain
(Fig. 4), possibly to account for condition-specific variability
resulting from differences in electrode location, biomechanics,
and muscle activation patterns. Despite the effectiveness of
the proposed framework, several limitations remain. Although
the model trained on aligned data in the shared latent space
yields the highest classification accuracy, it requires retraining
when new conditions are introduced, limiting its utility in real-
time applications. In contrast, the Mapped strategy eliminates
retraining by projecting new data into a reference space.
However, this comes at the cost of reduced accuracy due to the
potential reintroduction of condition-specific noise. Bridging
this trade-off remains an important area to investigate in future
work.

A promising future direction is to explore continual learning
adaptive models using unsupervised online or few-shot align-
ment approaches. In addition, dynamic selection of the number
of retained components may enhance robustness across vary-
ing acquisition conditions. Furthermore, building on our
experimental results from a participant with a congenital limb
difference, a key future direction for translating this approach
to prosthetic control is to conduct closed-loop experiments
with a larger population of individuals with upper-limb differ-
ences to establish clinical feasibility and generalizability.

V. CONCLUSION

We demonstrated that a one-shot alignment framework
using MCCA can reliably extract shared latent representations
of muscle activity across limb positions, days, and users,
including a participant with a congenital upper limb difference.
By aligning sEMG signals into a common latent subspace,
our method resulted in accurate and generalizable decoding
of gestures and object grasps with minimal calibration. These
findings suggest that variability in sEMG across different
conditions may reflect structured projections of a consistent
motor intent rather than noise, and that this structure can
be recovered through alignment. The proposed framework
offers user-independent, calibration-efficient control suitable
for wearable muscle-machine interfacing. Future work focus-
ing on unsupervised adaptation and validation for prosthetic
applications will be pivotal towards the wide deployment of
the framework.
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