
Catwalk: Unary Top-K for Efficient Ramp-No-Leak 
Neuron Design for Temporal Neural Networks

Devon Lister* devon.lister@ucf.edu

Prabhu Vellaisamy◊ pvellais@andrew.cmu.edu

John Paul Shen◊ jpshen@andrew.cmu.edu

Di Wu* di.wu@ucf.edu

*University of Central Florida
◊Carnegie Mellon University

ISVLSI 2025
Kalamata, Greece

20 May 2025

ISVLSI 2025 Catwalk 1

mailto:devon.lister@ucf.edu
mailto:pvellais@andrew.cmu.edu
mailto:jpshen@andrew.cmu.edu
mailto:di.wu@ucf.edu


ISVLSI 2025 Catwalk

Temporal Neural Networks (TNNs) 1,2

❑ TNNs are capable of continuous online learning and unsupervised clustering.

❑ This work focuses addresses the inefficiency of current spiking neuron implementations.
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Why TNNs? – Neuromorphic Traits

❑Spiking Neuron - Spike Response Model

❑Temporal Encoding3 - One spike per neuron

❑STDP - Form of Hebbian Learning

Rate Encoding Temporal Encoding

Condition Action

o/p spike occurs after 

i/p spike arrives

Increase synaptic 

weight

o/p spike occurs before 

i/p spike arrives

Decrease synaptic 

weight
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TNNs – Online Learning and Clustering

❑Excitatory neurons + Winner-Take-All inhibition

❑A fully operational TNN building block!

▪ Online Learning of MNIST digits4

▪ Unsupervised time-series clustering5
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Previous TNN Implementations
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❑TNN hardware developments

▪ Microarch implementation of TNNs in 45nm CMOS4

▪ TNN7: custom cell library for TNNs in 7nm6

▪ TNNGen: Automated SW-HW design flow7
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SRM0-RNL Neuron Model

❑ Existing SRM0-RNL neuron design assumes worst-case scenarios and are suboptimal.

▪ For n-input neuron, PC must accumulate n inputs even when absence of temporal spikes.

▪ However, neuron spikes are sparse (only 0.1% - 10% of total neurons are spiking actively).

𝝆 𝒘, 𝒕 = ቐ
𝟎,  𝒕 < 𝟎

 𝒕 + 𝟏, 𝟎 ≤ 𝒕 < 𝒘
𝒘,  𝒕 ≥ 𝒘

Biological neuron and its RNL circuit representation for RNL 

response function. 

Existing SRM0-RNL neuron model with input spikes temporally-

coded (red pulses).

RNL response function equation.
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Unary Sorting

❑ Bitonic sorting can be implemented via simple AND (min) and OR (max) gates.

▪ Temporal spikes to SRM0-RNL neuron can be ranked, with larger values clustered at bottom.

▪ Finding inputs with effective spikes allows implementation of more lightweight parallel counter (PC).

Propose Catwalk neuron model leveraging optimized spike aggregation with lightweight PC design!!

Min and max operations using temporal coding. Compare-and-swap unit using min and max implementing a 2-input 

bitonic sorter.
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Catwalk Neuron: Microarchitecture

Previous SRM0-RNL neuron body microarchitecture (PC 

Compact4), utilizing a 16-input PC.

Catwalk SRM0-RNL neuron body microarchitecture, taking in 

16-inputs and selecting top-2 outputs.
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Catwalk Neuron: Top-k Selection Designs

❑ Two types of unary sorters - (i) bitonic and (ii) 

optimal7.

❑ Different unary sorters produce identical 

results with different cost reduction.

❑ For top-2, bitonic and optimal sorters prunes 

identical compare-and-swap units.

❑ For top-4, bitonic sorters prunes more.

❑ Final cost of unary top-k is independent of 

the cost reduction in compare-and-swap unit.

❑ Higher the k, the higher the hardware cost.

❑ Catwalk neuron model incorporates the 

optimal sorters.
Comparison of unary top-k selector derived from different unary 

sorters with 8 inputs. (a) and (b) are pruning bitonic sorters, while 

(c) and (d) are pruning optimal, 
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Gate Count Analysis

Gate count of unary top-k. Solid color at top is for the removed gates 

in half compare-and-swap units.
Gate count of dendrite adopting unary top-k and compact PC.

❑ Significant hardware savings from:

▪ Pruned swap-and-compare units.

▪ Removed gates from half compare-and-swap units.

❑ Increased cost savings with scaled inputs – demonstrating potential of unary top-k.

❑ For dendrite designs, unary top-2 provides gains in gate count. Larger k values do not. 
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Evaluation Setup

❑ Hardware evaluations performed using NanGate45 standard cell library for 45nm CMOS results.

❑ Design configurations:

▪ A stand-alone sorting/top-k stage, including unary bitonic sorters and optimal unary top-k.

▪ A sorting/top-k stage interfaced with a PC (a conventional design and a compact design).

▪ Full SRM0-RNL neuron (bitonic sorting/optimal top-2 stage interfaced with a PC and augmented with a 

thresholding and firing unit).

❑ Synthesis and place-and-route performed using Synopsys Design Compiler and Cadence 

Innovus at 400MHz clock frequency.

▪ Square floorplan with 70% utilization for each neuron input size (16, 32, and 64).

❑ Only n={4, 8, 16, 32, 64} are publicly available. Exploration of larger n is for future work.
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Post-Synthesis Results: Top-K and Dendrite

Unary Top-k Dendrite
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Post-Synthesis Results: Neuron

❑ Neurons apply identical 5-bit accumulation and threshold implementation.

❑ Top-k uses optimal sorters, while sorting use bitonic sorters.

❑ Catwalk (Top-2 PC) improves area and power efficiencies by:

▪ 1.05x and 1.35x over the neuron with compact PC.

▪ 1.05x and 1.17x over the sorting-based neuron.
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Post-PnR Results: Neuron

❑ Catwalk efficiency compared to PC Compact:

▪ Area efficiency: 1.23x, 1.32x and, 1.39x for n = 

16, 32 and, 64, resp.

▪ Power efficiency by 1.38x, 1.67x and 1.86x for 

n = 16, 32 and, 64, resp.

❑ Generally, area-power efficiency scales with 

inputs n.

❑ Demonstrates importance of opting for top-k 

over sorting, despite the identical 

functionality.
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Thank you! 

Any Questions?

Email: pvellais@andrew.cmu.edu
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