
Catwalk: Unary Top-K for Efficient Ramp-No-Leak
Neuron Design for Temporal Neural Networks

Devon Lister
University of Central Florida

Orlando, FL, USA
devon.lister@ucf.edu

Prabhu Vellaisamy
Carnegie Mellon University

Pittsburgh, PA, CMU
pvellais@andrew.cmu.edu

John Paul Shen
Carnegie Mellon University

Pittsburgh, PA, CMU
jpshen@andrew.cmu.edu

Di Wu
University of Central Florida

Orlando, FL, USA
di.wu@ucf.edu

Abstract—Temporal neural networks (TNNs) are neuromor-
phic neural networks that utilize bit-serial temporal coding.
TNNs are composed of columns, which in turn employ neurons
as their building blocks. Each neuron processes volleys of input
spikes, modulated by associated synaptic weights, on its dendritic
inputs. Recently proposed neuron implementation in CMOS
employs a Spike Response Model (SRM) with a ramp-no-leak
(RNL) response function and assumes all the inputs can carry
spikes. However, in actual spike volleys, only a small subset
of the dendritic inputs actually carry spikes in each compute
cycle. This form of sparsity can be exploited to achieve better
hardware efficiency. In this paper, we propose a Catwalk neuron
implementation by relocating spikes in a spike volley as a sorted
subset cluster via unary top-k. Such relocation can significantly
reduce the cost of the subsequent parallel counter (PC) for
accumulating the response functions from the spiking inputs. This
can lead to improvements on area and power efficiency in RNL
neuron implementation. Place-and-route results show Catwalk
is 1.39× and 1.86× better in area and power, respectively, as
compared to existing SRM0-RNL neurons.

Index Terms—temporal neural network, neuron, temporal
coding, unary computing, top-k, hardware efficiency.

I. INTRODUCTION

Neuromorphic computing, particularly represented by spik-
ing neural networks (SNNs) [15], has emerged as an at-
tractive alternative to conventional compute-intensive deep
neural networks (DNNs) due to its brain-inspired approach
for computational efficiency. Unlike DNNs, which transmit
continuous-valued signals, neurons in SNNs communicate
information through discrete spike or pulse events. Central to
these architectures is the neuron model, which defines how
neurons generate and respond to spikes. Among various neu-
ron models, the spike response model (SRM) has been widely
utilized, especially in its simplified variant, the SRM0 model,
characterized by a fixed spike generation threshold. The SRM0
neuron can employ several types of response functions, such
as biexponential [4], piecewise linear [6], step-no-leak [3],
[5], [12], and, notably, the ramp-no-leak (RNL) function [12],
[13]. The RNL function has recently gained significant interest
due to its practical advantages in temporal neural network
(TNN) applications [1], [7], [8], [12]–[14], [17]. TNNs, a
special class of SNNs, are capable of continuous [13] online
learning and unsupervised clustering [1], [12] by employing
precise spike timing and biologically-plausible spike-timing

Dendrite

Synapse Soma

Axon

ACC/
THD CNT

Dendrite

Soma

Axon
PC…

Fig. 1: A bilogical neuron and and its circuit representation
using ramp-no-leak response function. PC (parallel counter)
integrates all current incoming spikes modulated by the
synaptic weights. ACC/THD is the soma (neuron body) that
accumulates (ACC) all incoming potentials from dendrites
and checks whether the accumulated potential surpasses a
predefined threshold (THD). CNT (counter) is the axon output
that fires a spike if the accumulated potential is higher than
the threshold. The synapses are not shown here for simplicity.

dependent plasticity (STDP) local learning rule. This contrasts
with the compute intensive global backpropagation methods
predominantly used in traditional DNNs.

Existing TNNs adopt an SRM0 neuron model with an
RNL response function [12], [13]. For brevity, we henceforth
call this neuron model an SRM0-RNL neuron in this paper.
However, current SRM0-RNL neuron implementations [7],
[8], [17] employ worst-case scenarios for temporal signal
processing and provides increased hardware resources for
maximal spike density scenarios, which rarely occurs due to
the inherent sparsity, i.e., just 0.1%-10% of total count of
neurons are observed to fire biologically [10], [11], [20].

To address these inefficiencies, this paper introduces Cat-
walk, a novel neuron architecture employing unary top-k
to optimize spike aggregation at neuron inputs. Catwalk
leverages the inherent sparsity in temporal-coded spikes to
cluster active spikes efficiently, enabling the replacement
of conventional, fully provisioned parallel counter (PC), for
accumulation of input response functions, with significantly
more compact and efficient counterparts. Specifically, our
contributions are:

• We propose Catwalk, a novel technique that relocates
the top-k temporal spikes to optimize spike aggregation
in neuron inputs for better hardware efficiency.

• A detailed evaluation against baseline designs, including
SRM0-RNL neurons that employ conventional PCs and
those that integrate unary sorting, demonstrates the clear979-8-3315-3477-6/25/$31.00 © 2025 IEEE

x0

x1

x2

x3

Synapse
weight

w0=4

w1=7

w2=3

w3=7

Output
spikeAxon

Soma

Dendrite

0

1

4

Response
function

Input
spike

Threshold

Membrane
potential

Time

5

(a) An existing SRM0-RNL neuron model [12], [13]. The input spikes
x{0,1,2} are temporal-coded (red pulses), where the spike timing encodes
the value. Note it is allowed that an input has no spike at all, representing
a value of ∞, e.g., x{3}. When a synapse receives an input spike, it will
instantly trigger the RNL response function, which is described in Equation 1.
This function generates a pulse whose width is identical to the weight value,
indicated by the number of dots in blue. The soma will accumulate all these
weight pulses as the membrane potential. Once the accumulated potential
exceeds a threshold, the axon will fire an output spike, and the neuron will
be reset.

x0

x1

x2

x3

Synapse
weight

w0=4

w1=7

w2=3

w3=7

Output
spikeAxon

Soma

Dendrite

0

1

4

Response
function

Input
spike

Threshold

Membrane
potential

Time

5

U
na

ry
 t

op
-k

(b) Our proposed Catwalk neuron model with unary top-k. Catwalk inserts
unary top-k at the dendrite, which relocates and clusters the spikes together. Our
spike relocation reduces the number of valid spike volleys without alternating
the number of valid spikes, reducing the cost of PC in the dendrite.

Fig. 2: Comparison of an existing SRM0-RNL neuron model
and our proposed Catwalk neuron model for TNNs.

advantages of our proposed Catwalk neuron.
• Place-and-route evaluation at 45nm CMOS shows area

and power improvements of 1.39× and 1.86×, respec-
tively, relative to existing SRM0-RNL neurons.

This paper is organized as follows. Section II and Section III
review the background and motivate this work. Then Sec-
tion IV describes the proposed neuron design. The following
Section V and Section VI evaluate the implementation. Finally,
Section VII concludes this work.

II. BACKGROUND

A. SRM0-RNL Neuron

SRM0-RNL neurons closely follow the formulation of bio-
logical neurons (Fig. 1), and existing TNNs encode informa-
tion through precise spike timings rather than spike rates [12],
[13]. The mechanism of this neuron model is explained further
in Fig. 2a from prior works [12], [13], and is contrasted with
our Catwalk neuron model, depicted in Fig. 2b. Each post-
synaptic neuron is fed by incoming temporal-coded spikes
from all preceding neurons (pre-synaptic neurons), where the
synapse responses are accumulated. The axon fires a spike if
the accumulated membrane potential exceeds a certain thresh-
old. In the existing SRM0-RNL implementations, all incoming

Min

Max

76543210 76543210

(a) Min and max via temporal coding.

76543210 76543210

(b) Compare-and-swap unit via min and max. This is also a 2-input bitonic
sorter. Sorting more inputs can be done by repeating this unit recursively.

Fig. 3: Unary sorting via temporal coding. This example
encodes unary data in a leading-0 mode. The timing of the
rising edge marks the data value, as colored by red and blue.

responses are summed during potential accumulation [7]. The
RNL response function is provided in Equation 1, where w
is the weight value and t refers to time. Therefore, the RNL
response function essentially creates a pulse of width w over
time, to be accumulated later.

ρ(w, t) = 0 if t < 0

= t+ 1 if 0 ≤ t < w

= w if t ≥ w

(1)

B. Unary Sorting

Unary data representations, either rate-coded or temporal-
coded, have been used to perform various operations, including
multiplication, addition [18], division, square root [19], min,
max [16]. Among these, bitonic sorting on temporal-coded
unary data (e.g. temporal spikes in SRM0-RNL neurons) can
be implemented via simple AND and OR gates [9]. An exam-
ple of unary sorting is shown in Fig. 3. Fig. 3a shows the use of
simple AND and OR gates to perform min and max operations
with temporal coding, respectively. Fig. 3b illustrates the basic
compare-and-swap unit for unary sorting. The input temporal
signals are ranked in order at the output, with the larger values
clustered at the bottom. The simplicity of unary compare-and-
swap units offers opportunities in integration with SRM0-RNL
neurons, leading to a more optimized design.

III. MOTIVATION AND OPPORTUNITY

The existing SRM0-RNL neuron design assumes the worst-
case scenarios. For an n-input neuron, the PC must accumulate
all n inputs, even if temporal spikes are not present for some
inputs. This worst-case neuron design does not consider the
biological aspect of neurons, i.e. it is de facto that neuron
spikes are extremely sparse and only 0.1% ∼ 10% of total
neurons are actively spiking in any given compute cycle [10],

[11], [20]. Such a worst-case neuron design overprovisions
hardware resources, incurring suboptimal efficiency.

Since the inputs of SRM0-RNL neurons are temporal coded,
there exist opportunities to find the inputs with effective spikes
using the unary logic in Fig. 3, and then use a more lightweight
PC to aggregate these effective spikes.

In this work, we propose Catwalk to take advantage of
this existing technique and optimize spike aggregation for
more efficient SRM0-RNL neurons in TNNs. Our proposed
Catwalk neuron model ingests all temporal spikes from pre-
synaptic neurons and relocates them, so that all active spikes
are clustered together. Then we can substitute the original full
PC with a more lightweight version. As long as the cost of the
spike relocation and the new PC is less than the original full
PC, Catwalk offers hardware efficiency gains. Given the high
neuronal sparsity within actual workloads, Catwalk should not
cause significant accuracy concerns. More experimental work
is needed to validate this.

IV. CATWALK NEURON VIA UNARY TOP-K

In this section, we describe the hardware design of the
proposed Catwalk neuron using unary top-k.

A. Catwalk Neuron Microarchitecture

We show the microarchitecture of the existing SRM0-RNL
neuron and our Catwalk neuron with unary top k in Fig. 4. As
illustrated in Fig. 2b, the key idea of Catwalk is to identify
the valid temporal spikes, which simply means finding the
sparse bit ones at each clock cycle from an input collection of
bit ones and zeros. We coin this function as unary top k. As
shown in Fig. 4a, existing SRM0-RNL neurons employ large
PCs for accumulating response functions of input dendrites,
requiring n − 1 full adders for n inputs [7]. Our Catwalk
neuron simply replace the large PC in the dendrite with unary
top-k and smaller PC, with no other changes to the soma and
axon. As TNNs integrate multiple SRM0-RNL neurons into
one TNN column [7], [12], [13], Catwalk is a plug-and-play
component that contributes to overall improvements in TNN
efficiency.

B. Unary Top-K

To implement unary top-k, we start with unary sorting
in Fig. 3. Unary sorting has all inputs sorted and is very
straightforward to find the top-k of all inputs. We show a
few examples in Fig. 5, assuming that the outputs are in an
ascending order from top to bottom. We evaluate two types of
unary sorters: bitonic and optimal [2]. Bitonic sorters follow
a structured bitonic pattern, while optimal sorters minimize
the number of compare-and-swap units, achieving the lowest
known count. We use Algorithm 1 to prune a given unary
sorter and obtain the corresponding unary top-k selector.

According to Fig. 5, we have the following three obser-
vations. First different unary sorters can yield identical top-k
results with varying pruning efficiency; for top-2, bitonic and
optimal sorters prune equally, but for top-4, bitonic prunes
more. Second, the final cost of unary top-k is independent of

Ci
FAFAFAFACo

HA

Membrane potential
register (5-bit) -Threshold

0
1

Reset

CiCo
FACiCo

FA CiCo
FACiCo

FA

x13 x12 x11 x10x15 x14 x9 x6 x5 x4 x3x8 x7 x2 x1 x0

Co
FA Ci

FA Co
FA Ci

FA

Ci
FAFACo

FA

Counter
(3-bit) Output

Dendrite
Soma

Axon

(a) Microarchitecture of an existing SRM0-RNL neuron. This example uses a
16-input PC as the dendrite to accumulate all possible input spikes (reproduced
from [7]). The spikes are accumulated to the membrane potential register in
the soma, which is then compared to a threshold to determine whether an
output spike shall fire. The counter in the axon produces an 8-cycle pulse if
an output spike occurs.

Ci
FAFAFAFACo

FA

Membrane potential
register (5-bit) -Threshold

0
1

Reset Counter
(3-bit) Output

Dendrite
Soma

Axon

x14

x13

x12

x11

x15

x9

x10

x8

CiCo
FA

x6

x5

x4

x3

x7

x1

x2

x0 Compare-and-swap unit

Half compare-and-swap unit

(b) Microarchitecture of our proposed Catwalk neuron. This example feeds on
16 inputs and selects top-2 outputs. Instead of a large PC, the dendrite is now
implemented using unary top-k, based on the compare-and-swap units (Fig. 3b)
and half compare-and-swap units. The half compare-and-swap units does not
have the dash gate, whose output is no longer needed. The design of soma and
axon remains identical to that in existing SRM0-RNL neurons (Fig. 4a).

Fig. 4: Microarchitecture comparison of existing SRM0-RNL
neuron and our proposed Catwalk neuron.

the cost reduction in compare-and-swap units. For both top-
2 and top-4, the final costs depend on both the original cost

Algorithm 1: Top-k pruning.
Input: S: a list of tuples for a unary sorter, with each

tuple representing a compare-and-swap unit
and ordered from left to right; n: number of
inputs; k: number of valid outputs.

Output: T : a list of tuples for a unary top-k selector;
H: a list of tuples for the corresponding half
compare-and-swap units.

1 M = [n− k, ..., n− 1]; /* Initialize top k outputs */
2 for (i, j) in reversed(S) do
3 if i or j in M then
4 T .insert((i, j)); /* Insert tuple to front */
5 M.append(j or i); /* Add the missing j or i */
6 end
7 end
8 L = T + [(n− k, n− k + 1), ..., (n− 2, n− 1)] ;

/* Initialize tuple list */
9 for (i, j) in L do

10 if i or j not in remainder node(L) then
11 H.append((i, j)); /* Add half unit */
12 end
13 end
14 return T , H

and the cost reduction. Third, the higher the k, the higher the
hardware cost. From top-2 to top-4, less compare-and-swap
units can be pruned, as well with the half compare-and-swap
units (blue in Fig. 5).

In general, we observe that optimal sorters yield better
results, so we choose them for this work. However, a gap
remains between unary sorting and unary top-k, as directly
selecting the top k without full sorting could be even more
resource-efficient. This work focuses on optimal sorting-based
solutions, leaving optimal top-k selection for future research.

V. EXPERIMENTAL SETUP

We performed hardware evaluations using the NanGate45
standard cell library to obtain 45 nm CMOS implementation
results and evaluation results. Design configurations of 16, 32,
and 64 neuron inputs are chosen to enable comparisons across
different scales. Synthesis carried out in Synopsys Design
Compiler for three distinct design hierarchy configurations:
(i) a stand-alone sorting/top-k stage, including unary bitonic
sorters and optimal unary top-k, (ii) a sorting/top-k stage
interfaced with a PC (a conventional design and a compact
design), and (iii) bitonic sorting/optimal top-2 stage interfaced
with a PC and augmented with a thresholding and firing
unit, representing a SRM0-RNL neuron. At the final design
hierarchy, all configurations are clocked at 400 MHz to ensure
consistent timing assumptions.

Designs are then placed and routed using Cadence Innovus
with the NanGate45 cell library. For these experiments, we
again clock the designs at 400 MHz using a square floor plan

(a) Top-2 bitonic (24/19/6). (b) Top-4 bitonic (24/20/4).

(c) Top-2 optimal (19/14/6). (d) Top-4 optimal (19/18/4).

Fig. 5: Comparison of unary top-k selector derived from
different unary sorters with 8 inputs. The top-k outputs are
at the bottom. (a) and (b) are pruning bitonic sorters, while
(c) and (d) are pruning optimal, thus smallest sorters [2].
Each vertical segment represents one compare-and-swap unit
in Fig. 3b. Black and red segments mark the mandatory
and redundant compare-and-swap units in the unary sorter to
implement unary top-k selector. Therefore, red units can be
removed. Blue crosses mark these mandatory compare-and-
swap units where only half of each unit is needed, i.e., one
of the two outputs will not be used anymore. Blue crosses
correspond to the dashed gates in Fig. 4b. x/y/z represent the
number of total, mandatory, half compare-and-swap units.

with 70% utilization for each input size to provide a consistent
basis for comparison.

VI. EVALUATION

This section evaluates the cost of our proposed Catwalk
neuron from both theoretical and experimental aspects.

A. Gate Count Analysis

Given the crux of using a lightweight unary top-k selector
and PC to replace the original large PC, and the corresponding
large design space, we seek to understand the potential of
Catwalk. More specifically, we examine the gate count of
multiple unary top-k and dendrite input designs. We assume
power-of-2 values for all n (inputs) and k (top-k selections).

Fig. 6a shows the gate count of different unary top-k
designs. We use optimal sorters to derive these unary top-k
selectors. The combined stacked bar is the total gate count for
the remaining compare-and-swap units after pruning.

We observe that pruning compare-and-swap units signifi-
cantly reduces hardware costs. Additionally, removing gates
from half compare-and-swap units provides a smaller, but
still helpful, optimization. The gate saving trends for n =
{16, 32, 64} demonstrates the potential of unary top-k in
reducing the dendrite cost, thus neuron cost, from a theoretical
aspect. Fig. 6b shows the gate count for different dendrite

4 8 16 32 64
Number of neuron inputs (n)

0

1000
G

at
e

co
un

t
k=2
k=4

k=8
k=16

k=32
k=64

(a) Gate count of unary top-k using Algorithm 1. Light color at the bottom is
for the number of effective gates that contribute to the functionality, and solid
color at the top is for the removed gate in half compare-and swap units. When
n == k, unary top-k becomes unary sorting with no pruning.

4 8 16 32 64
Number of neuron inputs (n)

0

1000

G
at

e
co

un
t

(b) Gate count of dendrite. The dendrite adopts unary top-k (using Algorithm 1)
and compact PC (n− 1 full adders for n inputs). When n == k, the dendrite
is just a large n-input compact PC without unary top-k.

Fig. 6: Gate count analysis of unary top-k and dendrite.

designs. We observe that when k = 2, unary top-k offers
gains in gate count, while larger k values do not. This is due
to unary sorting-based unary top-k becomes more costly with
larger k, as shown in Fig. 5.

B. Synthesis Results

1) Unary Top-K: We synthesize unary sorting and unary
top-k based on optimal sorting, which has the minimum
number of compare-and-swap units known to date [2]. Only
n = {4, 8, 16, 32, 64} are publicly available, and we leave
the exploration of larger n to future work. The unary top-k
selectors are obtained using the same method as in Fig. 5.
We show the results in Fig. 7. Fig. 7a and Fig. 7b show the
synthesized area and power for different n and k, and we
observe graceful scaling when sweeping n and k.

2) Dendrite: We also synthesize different dendrites, with
results given in Fig. 8. To avoid an exploding design space,
we do not explore all dendrite combinations, but focus on
the most efficient and available options. As the sparsity in
neurons can be as low as 0.1% [10], [11], [20], we consider
k = 2 sufficient for the input count n = {16, 32, 64}. We do
not consider larger n, as no such optimal sorters are publicly
available [2]. Note that with k = 2, the PC for top-k and
sorting is just one full adder, as shown in Fig. 4b.

Three observations can be made. First, unary top-k offers
up to 1.17× area savings over two PCs, aligning with theo-
retical gate count analysis. However, unary sorting does not
consistently show better or worse area. Second, conventional
PC (using an adder tree for accumulation) does not show
worse area and power compared to compact PC (Fig. 4a). A
conventional PC should have a larger cost in theory, but it is
reasonable in the small scale that we are focusing on. Third,

4 8 16 32 64
Number of neuron inputs (n)

0

500

Ar
ea

 (
m

2) k=2
k=4

k=8
k=16

k=32
k=64

(a) Area.

4 8 16 32 64
Number of neuron inputs (n)

0

50

Po
w

er
 (

W
)

(b) Power.

Fig. 7: Synthesis results of unary top-k. When n == k, unary
top-k becomes unary sorting.

16 32 64
Number of neuron inputs (n)

0

100

Ar
ea

 (
m

2)
Top-2 PC (Catwalk)
Sorting PC

PC conventional
PC compact

(a) Area.

16 32 64
Number of neuron inputs (n)

0

25

Po
w

er
 (

W
)

(b) Power.

Fig. 8: Synthesis results of dendrite. Top-k here uses optimal
sorters, while sorting use bitonic sorters. n = {16, 32, 64} are
studied, and k is fixed to 2.

both top-k and sorting show significant reduction in power
consumption. The leakage power of different designs remains
similar, while top-k (and sorting) lowers the dynamic power
significantly, boosting the power efficiency by up to 4.52×.

3) Neuron: We further synthesize the full neuron, includ-
ing dendrite, soma, and axon, with results given in Fig. 9.
The experimental setup here is identical to that in dendrite
evaluation. Catwalk (Top-2 PC) improves area and power by
1.05× and 1.35× over the neuron with a compact PC, and by
1.05× and 1.17× over the sorting-based neuron. This aligns

16 32 64
Number of neuron inputs (n)

0

200

Ar
ea

 (
m

2)
Top-2 PC (Catwalk)
Sorting PC

PC conventional
PC compact

(a) Area.

16 32 64
Number of neuron inputs (n)

0

100

Po
w

er
 (

W
)

(b) Power.

Fig. 9: Synthesis results of neuron. These neurons apply
identical 5-bit accumulation and threshold implementation.
Top-k here uses optimal sorters, while sorting use bitonic
sorters. n = {16, 32, 64} are studied, and k is fixed to 2.
Note that the PC compact neuron is from [7], and the top-k
PC neuron is our Catwalk neuron.

with insights from dendrite evaluation: while area reduction is
limited, power improvement is significant.

C. Place and Route Results

In addition to synthesis, we also place and route all neurons,
with the results in Table I. We observe that the leakage
power of different design does not change too much, and
Catwalk’s benefits mainly origins from the reduction in dy-
namic power. Compared with the compact PC-based neuron
(existing SRM0-RNL neuron design [7]), the area of Catwalk
is improved by 1.23×, 1.32× and 1.39; the power of Catwalk
is improved by 1.38×, 1.67× and 1.86× for n = 16, 32, 64.
In general, more improvements are present with larger n.
Then the improvements are slightly more compared to the
conventional PC-based neuron. Also, within the evaluated
range, Catwalk indeed shows both area and power improve-
ments compared to sorting PC-based neurons, indicating the
importance of opting for top-k over sorting, despite identical
functionality.

VII. CONCLUSION

This work identifies suboptimal efficiency of ramp-no-leak
neurons in temporal neural networks, due to worse-case spike
aggregation. We propose to relocate the temporal spikes via
unary top-k to reduce the hardware cost. Unary top-k can be
efficiently derived from unary sorting, with potential to reduce
dendritic costs in neurons. Through the use of lightweight
unary top-k and parallel counter, we show that the post place-

TABLE I: Place-and-route results of different neurons in 45
nm CMOS. Neuron configurations are same as in Fig. 9.

Neuron design Power (µW) Area

Leakage Dynamic Total (µm2)

n = 16, k = 2

PC conventional 5.11 94.65 99.76 245.25
PC compact [7] 4.84 96.95 101.80 239.13
Sorting PC 4.28 70.11 74.39 197.64
Top-k PC (Catwalk) 4.22 69.40 73.62 194.98

n = 32, k = 2

PC conventional 6.73 138.08 144.81 338.62
PC compact [7] 6.59 147.57 154.16 333.56
Sorting PC 5.73 88.24 93.97 256.42
Top-k PC (Catwalk) 5.66 86.79 92.45 252.97

n = 64, k = 2

PC conventional 9.39 210.79 220.19 500.88
PC compact [7] 9.29 236.20 245.50 495.03
Sorting PC 8.12 129.59 137.71 364.15
Top-k PC (Catwalk) 7.85 124.21 132.06 355.38

and-route area and power can be improved by up to 1.39×
and 1.86×, respectively, compared to existing neurons.

REFERENCES

[1] Shreyas Chaudhari et al. Unsupervised Clustering of Time Series Signals
Using Neuromorphic Energy-Efficient Temporal Neural Networks. In
ICASSP, 2021.

[2] Bert Dobbelaere. Smallest and Fastest Sorting Networks for A Given
Number of Inputs, 2017. Accessed: 2025-03-06.

[3] Meng Dong et al. Unsupervised Speech Recognition Through Spike-
Timing-Dependent Plasticity in A Convolutional Spiking Neural Net-
work. PloS one, 2018.

[4] Robert Gütig and Haim Sompolinsky. The Tempotron: A Neuron That
Learns Spike Timing–Based Decisions. Nature neuroscience, 2006.

[5] Saeed Reza Kheradpisheh et al. Stdp-based spiking deep convolutional
neural networks for object recognition. Neural Networks, 2018.

[6] Wolfgang Maass. Networks of Spiking Neurons: The Third Generation
of Neural Network Models. Neural networks, 1997.

[7] Harideep Nair et al. A Microarchitecture Implementation Framework
for Online Learning with Temporal Neural Networks. In ISVLSI, 2021.

[8] Harideep Nair et al. TNN7: A Custom Macro Suite for Implementing
Highly Optimized Designs of Neuromorphic TNNs. In ISVLSI, 2022.

[9] M. Hassan Najafi et al. Low-Cost Sorting Network Circuits Using Unary
Processing. TVLSI, 2018.

[10] Rodrigo Quian Quiroga and Gabriel Kreiman. Measuring Sparseness in
The Brain: Comment on Bowers (2009). Psychological Review, 2010.

[11] Shy Shoham et al. How Silent Is The Brain: Is There A “Dark Matter”
Problem in Neuroscience? Journal of Comparative Physiology A, 2006.

[12] James E. Smith. A Neuromorphic Paradigm for Online Unsupervised
Clustering. arXiv, 2020.

[13] James E. Smith. A Temporal Neural Network Architecture for Online
Learning. arXiv, 2020.

[14] James E Smith. Implementing Online Reinforcement Learning with
Temporal Neural Networks. arXiv, 2022.

[15] Amirhossein Tavanaei et al. Deep Learning in Spiking Neural Networks.
Neural networks, 2019.

[16] Georgios Tzimpragos et al. Boosted Race Trees for Low Energy
Classification. In ASPLOS, 2019.

[17] Prabhu Vellaisamy et al. TNNGen: Automated Design of Neuromorphic
Sensory Processing Units for Time-Series Clustering. TCAS-II, 2024.

[18] Di Wu et al. uGEMM: Unary Computing Architecture for GEMM
Applications. In ISCA, 2020.

[19] Di Wu and Joshua San Miguel. In-Stream Stochastic Division and
Square Root via Correlation. In DAC, 2019.

[20] Amirreza Yousefzadeh et al. Asynchronous Spiking Neurons, the Natural
Key to Exploit Temporal Sparsity. JETCAS, 2019.

