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Executive Summary

❑ Review the demand of energy-efficient GEMM implementations, 
and motivate uGEMM over other unary approaches.

❑ Demonstrate uGEMM’s compatibility for arbitrarily encoded inputs 
for multiplication and addition mathematically.

❑ Prove the knob of uGEMM’s high energy efficiency to be early 
termination enabled by high accuracy and stability.

2



Outline

❑ Background

❑ Motivation

❑ Architecture

❑ Evaluation
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GEneral Matrix Multiply (GEMM)
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➢ Ubiquitous in applications
• Computer vision
• Signal processing
• Machine learning

➢ “At the center of Deep Learning”
• 95% of GPU runtime
• 89% of CPU runtime

➢ Energy efficiency
• Unary computing as salvation

Y. Jia, “Learning Semantic Image Representations at a Large Scale,” PhD thesis.



Computing paradigm
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Paradigm Data Bit significance Computing domain

Binary 
computing

Bit parallel Parallel Varying Spatial

Bit serial

Unary computing
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Computing paradigm
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Paradigm Data Bit significance Computing domain

Binary 
computing

Bit parallel Parallel Varying Spatial
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Computing paradigm

7

Paradigm Data Bit significance Computing domain

Binary 
computing

Bit parallel Parallel Varying Spatial

Bit serial Serial Varying Temporal

Unary computing Serial Equal Temporal

0100 1000 0010 0010

1101 0110 1010 1011
1100 1010 1010 0010

16 bits

Unary Add



Unary computing scheme
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Scheme Bit stream Application

Stochastic computing Rate coding LDPC, image  processing, machine learning

Race logic

1101 1000 1010 1010 8 1s
Bit stream as data.
Probability of 1s matters only.

SRC

RNG

C
M

P …1010
…3819

…8888
Randomly determined



Unary computing scheme
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0000 0000 1111 1111 8 1s
Bit stream as data.
Delay of 1s matters only.

SRC

CNT

C
M

P …1111
…3210

…8888

Scheme Bit stream Application

Stochastic computing Rate coding LDPC, image  processing, machine learning

Race logic Temporal coding DNA sequencing, decision tree, sorting

Deterministically determined



Unary computing data – bit stream
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Unipolar value=0.5

Polarity
Binary 
width

Unary 
length

Probability
of 1s

Value Range

Unipolar
N 2^N P(1)

P(1) Unsigned, [0, 1]

Bipolar

1101 1000 1010 1010 8 1s



Unary computing data – bit stream
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Bipolar value=0.0

Polarity
Binary 
width

Unary 
length

Probability
of 1s

Value Range

Unipolar
N 2^N P(1)

P(1) Unsigned, [0, 1]

Bipolar 2*P(1)-1 Signed, [-1, 1]

8 1s1101 1000 1010 1010



Measure of bit streams
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Metric Bit stream Goal

Correlation Two How similar two bit streams are.

Stability

1101 1000 1010 1010

1101 1000 1010 1010
+1 correlation: count of aligned 1s is maximized. Aligned 1 count: 8

8 1s

8 1s

Expected in temporal coding



Measure of bit streams
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Metric Bit stream Goal

Correlation Two How similar two bit streams are.

Stability

0 correlation: count of aligned 1s is balanced.
1101 1000 1010 1010

1110 0100 0101 1010
Aligned 1 count: 4

8 1s

8 1s

1101 1000 1010 1010

1101 1000 1010 1010
+1 correlation: count of aligned 1s is maximized. Aligned 1 count: 8

8 1s

8 1s

Expected in rate coding



Measure of bit streams
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Metric Bit stream Goal

Correlation Two How similar two bit streams are.

Stability

1101 1000 1010 1010

1101 1000 1010 1010
+1 correlation: count of aligned 1s is maximized.

-1 correlation: count of aligned 1s is minimized.

0 correlation: count of aligned 1s is balanced.
1101 1000 1010 1010

1110 0100 0101 1010

1101 1000 1010 1010

0010 0111 0101 0101

Aligned 1 count: 8

Aligned 1 count: 4

Aligned 1 count: 0

8 1s

8 1s

8 1s

8 1s

8 1s

8 1s



Measure of bit streams
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Metric Bit stream Goal

Correlation Two How similar two bit streams are.

Stability One How fast a bit stream converges to its desired value.

1101 1000 1010 1010

Stable point: 
Error never exceeds a given 
threshold from now on.

Stability: 
Ratio of stable cycle count to 
all.

Stability = 1-(7-1)/16 = 0.625

0
0.2
0.4
0.6

1 3 5 7 9 11 13 15

Er
ro

r

Cycle

Cycle 7

8 1s



Measure of bit streams
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Metric Bit stream Goal

Correlation Two How similar two bit streams are.

Stability One How fast a bit stream converges to its desired value.

1101 1000 1010 1010

Stable point: 
Error never exceeds a given 
threshold from now on.

Stability: 
Ratio of stable cycle count to 
all.

Stability = 1-(7-1)/16 = 0.625

1010 1010 1010 1010

0
0.2
0.4
0.6

1 3 5 7 9 11 13 15

Er
ro

r

Cycle

0
0.2
0.4
0.6

1 3 5 7 9 11 13 15

Er
ro

r

Cycle

Cycle 7

Cycle 4 Stability = 1-(4-1)/16 = 0.8125

8 1s

8 1s



Measure of bit streams
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Metric Bit stream Goal

Correlation Two How similar two bit streams are.

Stability One How fast a bit stream converges to its desired value.

1101 1000 1010 1010

Stable point: 
Error never exceeds a given 
threshold from now on.

Stability: 
Ratio of stable cycle count to 
all.

1010 1010 1010 1010

0
0.2
0.4
0.6

1 3 5 7 9 11 13 15

Er
ro

r

Cycle

0
0.2
0.4
0.6

1 3 5 7 9 11 13 15

Er
ro

r

Cycle

Cycle 7

Cycle 4

High stability enables 
early termination.

8 1s

8 1s

Stability = 1-(7-1)/16 = 0.625

Stability = 1-(4-1)/16 = 0.8125



Outline

❑ Background

❑ Motivation

❑ Architecture

❑ Evaluation
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Unified uGEMM

19

➢ Unified unary General Matrix Multiplication
• First to support Add/Mul in temporal coding



Unified uGEMM
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➢ Unified unary General Matrix Multiplication
• First to support Add/Mul in temporal coding
• Compatibility for varying coding and polarity

Rate-coded 

or
Temporal-coded 

Rate &Temporal-

coding compatibility

Input

uGEMM uGEMM…

Layer 1 Layer N

Model Pipeline

Efficient hardware

computing kernels

Cat

(95%)

Reliable 

early 

termination

Cat

(99%)

Accurate

final 

results



Unified uGEMM

➢ Unified unary General Matrix Multiplication
• First to support Add/Mul in temporal coding
• Compatibility for varying coding and polarity
• Early termination

▪ Fully streaming computation
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Unified uGEMM

➢ Unified unary General Matrix Multiplication
• First to support Add/Mul in temporal coding
• Compatibility for varying coding and polarity 
• Early termination

▪ Fully streaming computation
▪ High accuracy and stability by solving the correlation problem
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Rate-coded 

or
Temporal-coded 

Rate &Temporal-

coding compatibility
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➢ Multiplication
• uMUL

▪ Unipolar and Bipolar

➢ Addition
• Scaled (uSADD)

▪ Unipolar and Bipolar

• Non-Scaled (uNSADD)
▪ Unipolar and Bipolar (first support)

uGEMM overview 
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uGEMM – Multiplication

➢ uMUL: unipolar
• Expected function
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uGEMM – Multiplication

➢ uMUL: unipolar
• Expected function

• Actual AND gate function
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uGEMM – Multiplication

➢ uMUL: unipolar
• Expected function

• Actual AND gate function

27

6/16 8/16=0.53/16

Correct with 0 correlation:
Marginal prob = conditional prob

3/6 = 0.5



uGEMM – Multiplication

➢ uMUL: unipolar
• Expected function

• Actual AND gate function
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6/16 8/16=0.53/16

Wrong with non-0 correlation:
Marginal prob != conditional prob

6/6 = 1.0

Correct with 0 correlation:
Marginal prob = conditional prob



uGEMM – Multiplication

➢ uMUL: unipolar
• Conditional bit stream generation

▪ Enforce P(Sin, 1=1) = P(Sin, 1=1| Sin, 0=1)

29

C: Counter
G: Bit stream generator

en

SRC

RNG

C
M

P



uGEMM – Multiplication

➢ uMUL: unipolar
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2 1

2/4: 1 0 0 1

2/4

0 0 0 1

Sin,1 is static in counter.

2/4*2/4=1/4 Cycle Counter (C) RNG (G) AND 0 (In 0) AND 1 Output

1 2 1 1 1 1

2

3

4

>



uGEMM – Multiplication

➢ uMUL: unipolar

31

2 3

2/4: 1 0 0 1

2/4Sin,1 is static in counter.

0 0 0 1

2/4*2/4=1/4 Cycle Counter (C) RNG (G) AND 0 (In 0) AND 1 Output

1 2 1 1 1 1

2 2 3 0 0 0

3

4

<
en



uGEMM – Multiplication

➢ uMUL: unipolar
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2 3

2/4: 1 0 0 1

2/4Sin,1 is static in counter.

0 0 0 1

2/4*2/4=1/4 Cycle Counter (C) RNG (G) AND 0 (In 0) AND 1 Output

1 2 1 1 1 1

2 2 3 0 0 0

3 2 3 0 0 0

4

<



uGEMM – Multiplication

➢ uMUL: unipolar
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2 3

2/4: 1 0 0 1

2/4Sin,1 is static in counter.

0 0 0 1

2/4*2/4=1/4 Cycle Counter (C) RNG (G) AND 0 (In 0) AND 1 Output

1 2 1 1 1 1

2 2 3 0 0 0

3 2 3 0 0 0

4 2 3 1 0 0<



uGEMM – Multiplication

➢ uMUL: unipolar

34

Cycle Counter (C) RNG (G) AND 0 (In 0) AND 1 Output

1 2 1 1 1 1

2 2 3 0 0 0

3 2 3 0 0 0

4 2 3 1 0 0

1/4

2/4: 1 0 0 1

2/4Sin,1 is static in counter.

0 0 0 1

2/4*2/4=1/4



➢ uSADD: unipolar

uGEMM – Scaled addition
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Cycle Input count (PC) Accumulator (A) Carry (output)

1 4 0 1

2

3

4

0

4

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

(3/4+2/4+1/4+2/4)/4=2/4

1 0 0 1



➢ uSADD: unipolar

uGEMM – Scaled addition
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Cycle Input count (PC) Accumulator (A) Carry (output)

1 4 0 1

2 1 1 0

3

4

1

1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

1 0 0 1

+

(3/4+2/4+1/4+2/4)/4=2/4



➢ uSADD: unipolar

uGEMM – Scaled addition
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Cycle Input count (PC) Accumulator (A) Carry (output)

1 4 0 1

2 1 1 0

3 2 3 0

4

3

2

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

1 0 0 1

+

(3/4+2/4+1/4+2/4)/4=2/4



➢ uSADD: unipolar

uGEMM – Scaled addition
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Cycle Input count (PC) Accumulator (A) Carry (output)

1 4 0 1

2 1 1 0

3 2 3 0

4 1 0 1

0

1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

1 0 0 1

+

(3/4+2/4+1/4+2/4)/4=2/4



➢ uSADD: unipolar

uGEMM – Scaled addition
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Cycle Input count (PC) Accumulator (A) Carry (output)

1 4 0 1

2 1 1 0

3 2 3 0

4 1 0 1

2/4

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

1 0 0 1

(3/4+2/4+1/4+2/4)/4=2/4



➢ uSADD
• Expected function

• Carry overflow mechanism
▪ Parallel counter (PC) records current input.
▪ When accumulation (A) overflows, output logic 1.

uGEMM – Scaled addition
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➢ uNSADD: unipolar

Cycle Input count (PC) Acc (1) Acc (3) Acc (1>3) Output

1 4 4 0 True 1

2

3

4

uGEMM – Non-scaled addition
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4

4

0
0

1 1 1 1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

Clip(3/4+2/4+1/4+2/4)=1

Anticipated

Historical



➢ uNSADD: unipolar

Cycle Input count (PC) Acc (1) Acc (3) Acc (1>3) Output

1 4 4 0 True 1

2 1 5 1 True 1

3

4

uGEMM – Non-scaled addition
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5

1
0

1

Clip(3/4+2/4+1/4+2/4)=1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1 1 1 1 1

+



➢ uNSADD: unipolar

Cycle Input count (PC) Acc (1) Acc (3) Acc (1>3) Output

1 4 4 0 True 1

2 1 5 1 True 1

3 2 7 2 True 1

4

uGEMM – Non-scaled addition
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7

2
0

2

Clip(3/4+2/4+1/4+2/4)=1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1 1 1 1 1

+



➢ uNSADD: unipolar

Cycle Input count (PC) Acc (1) Acc (3) Acc (1>3) Output

1 4 4 0 True 1

2 1 5 1 True 1

3 2 7 2 True 1

4 1 8 3 True 1

uGEMM – Non-scaled addition
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8

3
0

1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1

Clip(3/4+2/4+1/4+2/4)=1

1 1 1 1

+



➢ uNSADD: unipolar

uGEMM – Non-scaled addition
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Cycle Input count (PC) Acc (1) Acc (3) Acc (1>3) Output

1 4 4 0 True 1

2 1 5 1 True 1

3 2 7 2 True 1

4 1 8 3 True 1

4/4

Clip(3/4+2/4+1/4+2/4)=1

3/4: 0 1 1 1

2/4: 0 1 0 1

1/4: 0 0 0 1

2/4: 1 0 0 1 1 1 1 1



➢ uNSADD
• Expected function

• Output tracking mechanism
▪ Difference between anticipated and historical output 1s indicates what to 

output.

uGEMM – Non-scaled addition
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Anticipated

Historical



➢ Input insensitivity
• Multiplication

▪ Generating operand conditionally
▪ Ignoring correlation

uGEMM – Processing element
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➢ Input insensitivity
• Multiplication

▪ Generating operand conditionally
▪ Ignoring correlation

• Addition 
▪ Caring about bit count
▪ Ignoring bit distribution

uGEMM – Processing element
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uGEMM – PE array
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➢ High parallelism via broadcasting

➢ Input insensitivity due to PE

➢ Reliable early termination
• Fully streaming computation
• High accuracy and stability



Outline

❑ Background

❑ Motivation

❑ Architecture

❑ Evaluation
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uMUL performance: Unipolar

➢ Accurate final result
• Static input (ST) 
• In-stream input (IS)

➢ Faster stabilization
• Output/Input stability

➢ Input insensitivity
• Rate coding (RC)
• Temporal coding (TC)
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ADD performance: uSADD and uNSADD

➢ Accurate final result
➢ Faster stabilization
➢ Input insensitivity

52

First to support bipolar 
non-scaled addition



uGEMM performance

➢ Accurate final result
• Cross out all configurations
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Computing cycle



uGEMM performance

➢ Accurate final result
• Cross out all configurations
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Computing cycle



uGEMM performance

➢ Accurate final result
• Cross out all configurations

➢ Reliable early termination
• Earlier stable point
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uGEMM performance

➢ Accurate final result
• Cross out all configurations

➢ Reliable early termination
• Earlier stable point
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Computing cycle



uGEMM performance

➢ Accurate final result
• Cross out all configurations

➢ Reliable early termination
• Earlier stable point

➢ Input insensitivity
• Minimal RC/TC difference
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Computing cycle



uGEMM performance

➢ Accurate final result
• Cross out all configurations

➢ Reliable early termination
• Earlier stable point

➢ Input insensitivity
• Minimal RC/TC difference
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Computing cycle



MLP performance

➢ Final accuracy
• FP-32bit : 96.87%
• FXP-8bit:  96.08%
• uGEMM:  94.7%
• Gaines:     88.58%

59

➢ Cycle count for 95% final accuracy
• uGEMM: 71
• Gaines:    195



uGEMM Energy efficiency 

➢ Compared to other unary designs
• Higher energy efficiency, though slightly higher area

➢ Compared to binary bit-parallel designs
• Comparable for matrix multiplication
• 10X higher for matrix convolution

➢ Compared to binary bit-serial designs
• 5X higher for matrix convolution

60



Thank you!
Q & A
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