SECO: A Scalable Accuracy Approximate Exponential Function Via Cross-Layer Optimization

Di Wu, Tianen Chen, Chienfu Chen, Oghenefego Ahia, Joshua San Miguel, Mikko Lipasti, and Younghyun Kim University of Wisconsin-Madison

Executive Summary

□ Incremental approximation of exponentiation via Taylor series.

- Cross-layer optimization framework for energy-accuracy tradeoff, including algorithm-level and circuit-level.
- Application of the proposal to adaptive exponential integrate-andfire neuron.

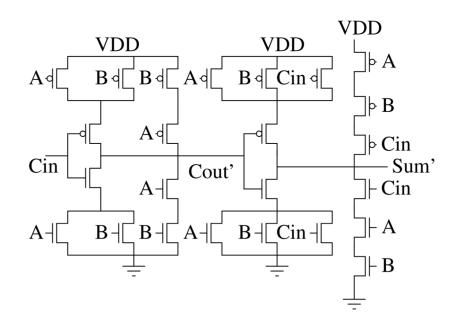
Outline

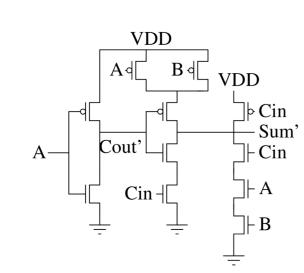
Background

- □ Approximate Taylor series
- **Cross-layer optimization**
- Performance evaluation
- Case study on AdEx neuron
- Conclusion
- □ Future work

Reduced accuracy for high energy efficiency

Circuit-level





Mirror adder

Base case

PSNR = 31.16

Truncation

Approximation 3

PSNR = 19.04PSNR = 28.9

V. Gupta, etc., IMPACT: IMPrecise adders for low-power approximate computing, 2011

4

Reduced accuracy for high energy efficiency

- Circuit-level
- Algorithm-level

```
for ( int i = 0; i < N; i++ ) {
    // do things
}</pre>
```

```
for ( int i = 0; i < N; i++ ) {
    // do things
    i = i + skip_factor;
}</pre>
```

Loop perforation

Reduced accuracy for high energy efficiency

- Circuit-level
- Algorithm-level
- Storage-level

$$\operatorname{trunc}(x,n) = \frac{\left\lceil 10^n \cdot x \right\rceil}{10^n}$$

$$\bigvee \operatorname{oltage}_{\operatorname{for 0}} 1 \\ \bigvee \operatorname{oltage}_{\operatorname{for 0}} 0 \\ \operatorname{Stored} \\ \operatorname{Refresh Cycle} \\ \operatorname{Refresh Cycle} \\ \operatorname{Time}_{\operatorname{for 0}} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle}} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle}} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle}} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle}} \\ \operatorname{Stored}_{\operatorname{Refresh Cycle} \\ \operatorname{St$$

DRAM refresh time tuning

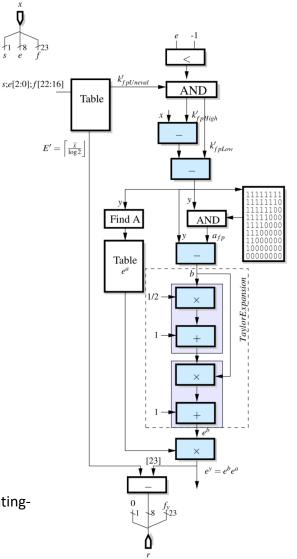
Truncation

- Reduced accuracy for high energy efficiency
 - Circuit-level
 - Algorithm-level
 - Storage-level
 - System-level: A combination of all

- Reduced accuracy for high energy efficiency
 - Circuit-level
 - Algorithm-level
 - Storage-level
 - System-level
- Energy-accuracy tradeoff
 - Design-time fixed
 - Run-time tunable
 - Input-aware

Background – Existing Exponentiation Unit

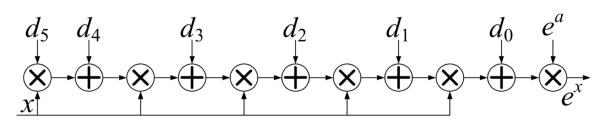
- Floating point
 - High accuracy
 - Long latency
 - High energy



M. Langhammer, Single Precision Logarithm and Exponential Architectures for Hard Floating-Point Enabled FPGAs, 2017

Background – Existing Exponentiation Unit

- Floating point
 - High accuracy
 - Long latency
 - High energy
- Fixed point
 - Taylor series
 - Fixed Taylor terms
 - Fixed precise coefficients

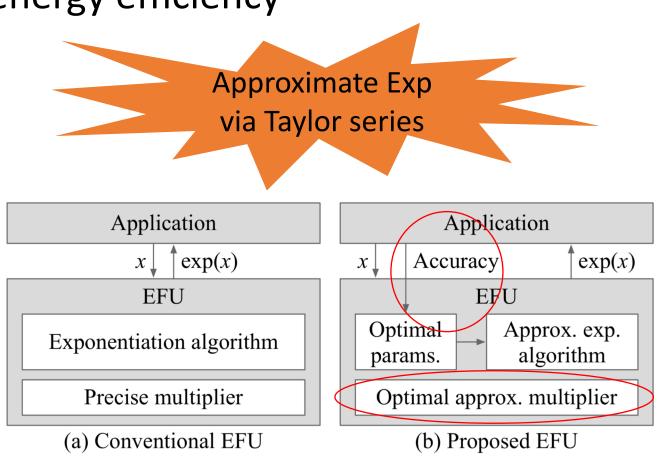


	Coefficient	Numerical value		
d_0	$1 - a + \frac{a^2}{2} - \frac{a^3}{6} + \frac{a^4}{24} - \frac{a^5}{120} + \frac{a^6}{720}$	0.606532118055556		
d_1	$1 - \frac{2a}{2} + \frac{3a^2}{6} - \frac{4a^3}{24} + \frac{31a^4}{720} - \frac{6a^5}{720}$	0.60659722222222		
<i>d</i> ₂	$\frac{1}{2} - \frac{3a}{6} + \frac{6a^2}{24} - \frac{64a^3}{720} + \frac{14a^4}{720}$	0.3026041666666667		
<i>d</i> ₃	$\frac{1}{6} - \frac{4a}{24} + \frac{66a^2}{720} - \frac{16a^3}{720}$	0.10347222222222		
<i>d</i> ₄	$\frac{1}{24} - \frac{34a}{720} + \frac{9a^2}{720}$	0.021180555555556		
d_5	$\frac{7}{720} - \frac{2a}{720}$	0.008333333333333333		

Our goal

Reduced accuracy for high energy efficiency

- Circuit-level
- Algorithm-level
- Storage-level
- System-level
- Energy-accuracy tradeoff
 - Design-time fixed
 - Run-time tunable
 - Input-aware



Outline

Background

- Approximate Taylor series
 Cross-layer optimization
 Performance evaluation
 Case study on AdEx neuron
- Conclusion
- □ Future work

- Conventional Taylor series
 - Accurate but not efficient

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

- Conventional Taylor series
 - Accurate but not efficient
- > Approximate Taylor Series
 - Multiplication skipping

es
t
$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

es
 $s_n \cdot \frac{x^n}{n!} \approx s_n \cdot \frac{x^{p_n}}{2^{q_n}},$
where, for $n = 0, 1, \dots, N,$

 $p_n = \begin{cases} p_{n-1} + 1 & \text{if multiplication is not skipped,} \\ p_{n-1} & \text{if multiplication is skipped,} \end{cases}$

- Conventional Taylor series
 - Accurate but not efficient ۲
- > Approximate Taylor Series
 - Multiplication skipping
 - Approximate division

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$
$$s_n \cdot \frac{x^n}{n!} \approx s_n \cdot \frac{x^{p_n}}{2^{q_n}},$$
, for $n = 0, 1, \dots, N$,

where,

 $p_n = \begin{cases} p_{n-1} + 1 & \text{if multiplication is not skipped,} \\ p_{n-1} & \text{if multiplication is skipped,} \end{cases}$

Q_n is the shifting offset S_n is the sign

- Conventional Taylor series
 - Accurate but not efficient
- Approximate Taylor Series
 - Multiplication skipping
 - Approximate division

 $(s_n \cdot \frac{x^n}{n!}) \approx s_n \cdot \frac{x^{p_n}}{2^{q_n}},$ **Double-sided expansion** • where, for n = 0, 1, ...,

 $p_n = \begin{cases} p_{n-1} + 1 & \text{if multiplication is not skipped,} \\ p_{n-1} & \text{if multiplication is skipped,} \end{cases}$

 $\exp(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!} \right) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$

Q_n is the shifting offset S_n is the sign

- Conventional Taylor series
 - Accurate but not efficient
- > Approximate Taylor Series
 - Multiplication skipping
 - Approximate division
 - Double-sided expansion

➢ Example

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

$$\exp(x) = \frac{x^0}{2^0} + \frac{x^1}{2^0} + \frac{x^2}{2^1} + \frac{x^3}{2^2} - \frac{x^4}{2^3} + \frac{x^5}{2^4} + \frac{x^5}{2^5}$$

- Conventional Taylor series
 - Accurate but not efficient

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

- > Approximate Taylor Series
 - Multiplication skipping
 - Approximate division
 - Double-sided expansion

➢ Example

$$\exp(x) = \frac{x^0}{2^0} + \frac{x^1}{2^0} + \frac{x^2}{2^1} + \frac{x^3}{2^2} - \frac{x^4}{2^3} + \frac{x^5}{2^4} + \frac{x^5}{2^5}$$

- Conventional Taylor series
 - Accurate but not efficient

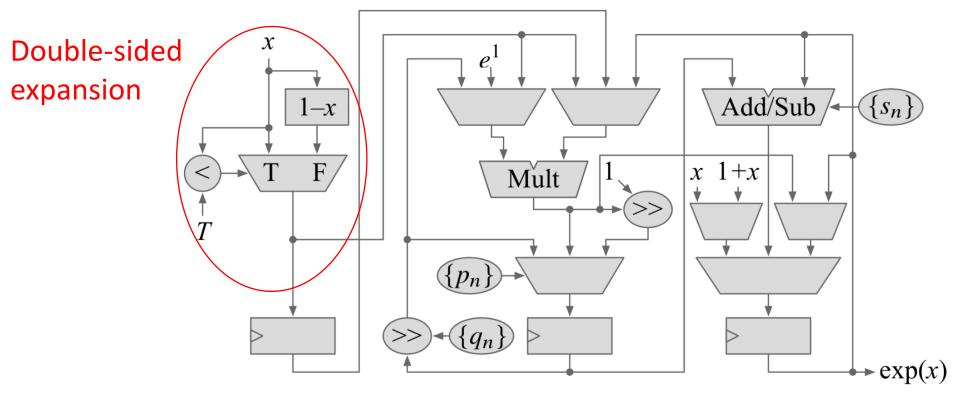
$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,$$

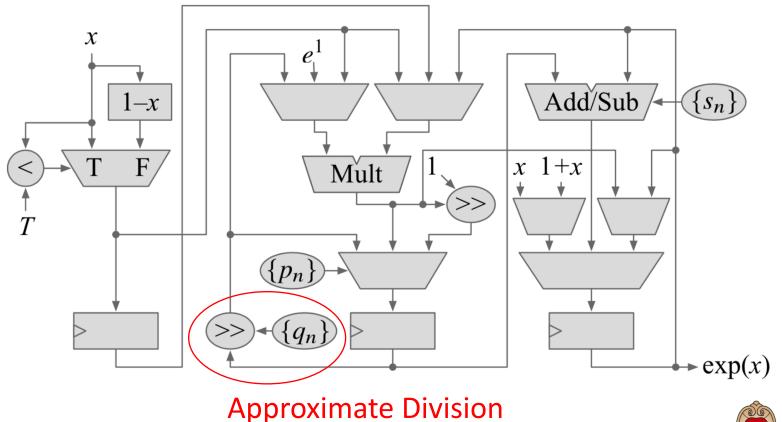
- > Approximate Taylor Series
 - Multiplication skipping
 - Approximate division
 - Double-sided expansion

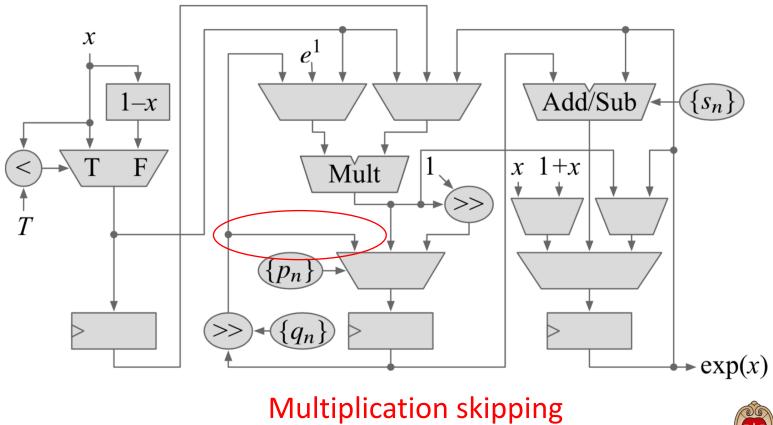
➢ Example

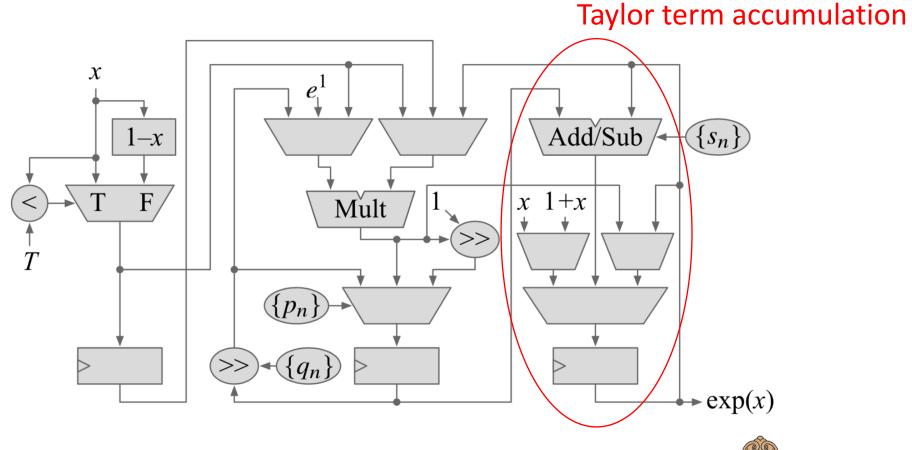
$$\exp(x) = \frac{x^0}{2^0} + \frac{x^1}{2^0} + \frac{x^2}{2^1} + \frac{x^3}{2^2} - \frac{x^4}{2^3} + \frac{x^5}{2^4} + \frac{x^5}{2^5}$$

Error compensation









Outline

Background Approximate Taylor series **Cross-layer optimization** Performance evaluation Case study on AdEx neuron Conclusion **□** Future work

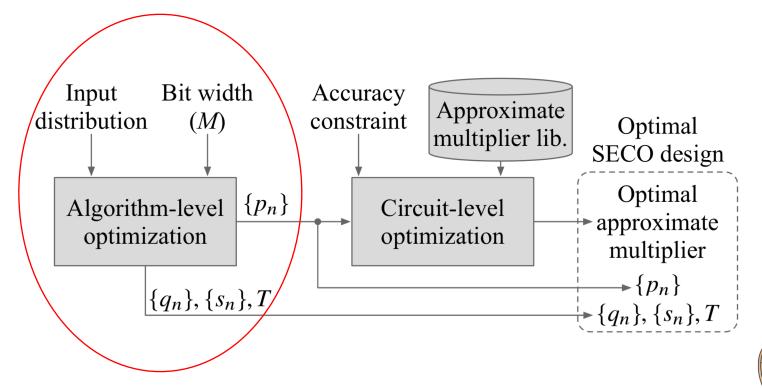
Cross-layer optimization – Benefit

Varying run-time demands

- Static design-time optimization is not always satisfying
- Achieving the best application-level approximation
 - Isolated circuit design is usually for uniform input
 - Unknown input distribution leads to uncontrollable output quality
 - To the limits of approximation
- Cross-layer optimization bridges approximate circuits and real applications

Cross-layer optimization – Flow

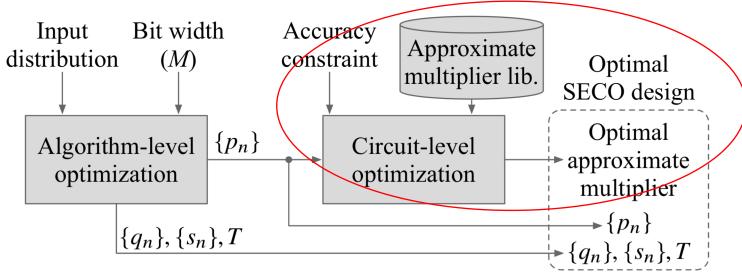
- Algorithm level
 - Find the best parameters
- 1. multiplication skipping
- 2. approximate division
- 3. double-sided expansion



Cross-layer optimization – Flow

Algorithm level

- Find the best parameters
- Circuit level
 - Find the best approximate multiplier from verified library



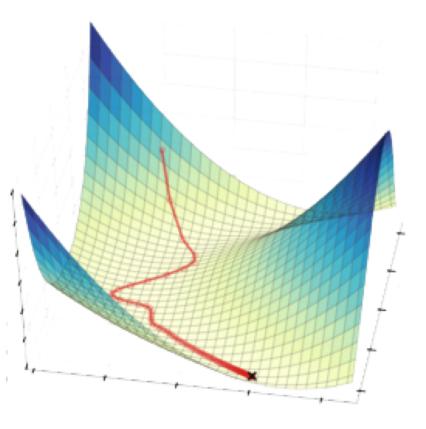
V. Mrazek, EvoApproxSb: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods, 2017

Cross-layer optimization – Algorithm

Algorithm level

- Optimized greedy search: discrete gradient descent
- Large discrete parameter space
- Regard output error as gradient
- Choose the parameter with the least error at each order

$\{p_n\}$								
$\{s_n \cdot q_n\}$	0,	0,	1,	2,	-3,	4,	5	



Cross-layer optimization – Algorithm

- Circuit level
 - Input distribution aware
 - Weighted output error

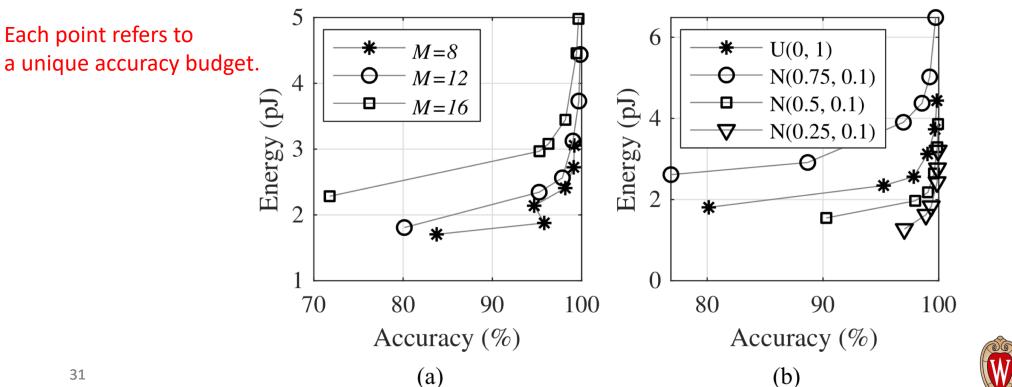
$$\overline{WMRE} = \sum_{m=0}^{2^{M}-1} P_m \cdot \left(\frac{\overline{\exp}(x_m)}{\exp(x_m)} - 1\right)$$

- Select proper multipliers from the verified library via error prediction
- Exhaustive profiling on selected approximate multipliers

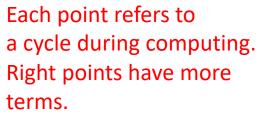
Outline

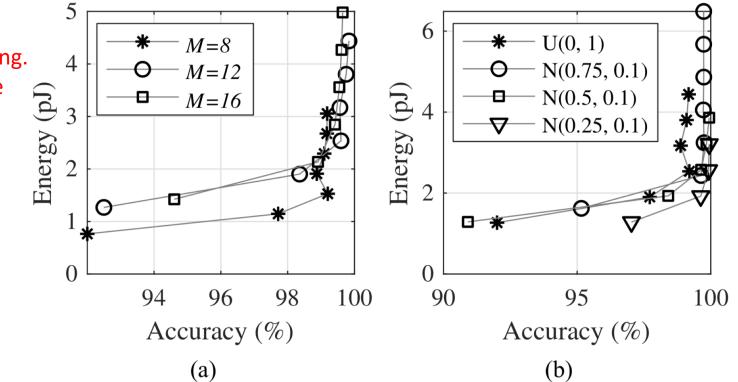
- Background
- Approximate Taylor series
- Cross-layer optimization
- Performance evaluation
- Case study on AdEx neuron
- Conclusion
- □ Future work

- Static Design-time optimization
 - a) Varying bitwidth M
 - b) Varying input distribution (U~uniform, N~ Gaussian)

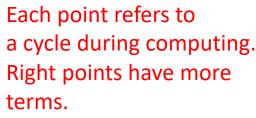


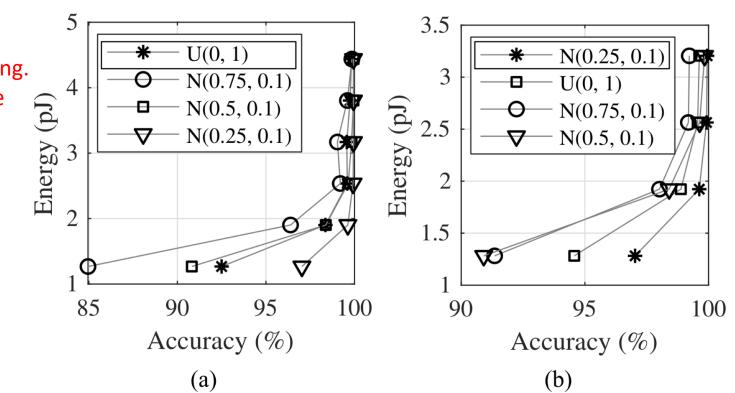
- Dynamic run-time energy-accuracy scaling
 - a) Varying bitwidth M
 - b) Varying input distribution (U~uniform, N~Gaussian)





Input variation affects dynamic run-time scaling
 a) Different inputs to the circuit for uniform~U(0, 1)
 b) Different inputs to the circuit for Gaussian~N(0.25, 0.1)





- Synthesized with Design Compiler
 - TSMC 45 nm vs STM 65 nm
 - Largest accuracy drop between 99.7% to 99.1%
 - 23% of original power
 - 5.4% of original area
 - 17.5% of original latency

	Design	Accuracy	Latency	Area	Power	Energy
		const. (%)	(ns)	(µm ²)	(mW)	(pJ)
ſ		99.7	17.5	1,118	0.223	3.73
	SECO	99.1	20	611	0.136	2.72
		98.2	20	517	0.120	2.41
		95.2	20	378	0.094	1.88
		83.8	20	328	0.085	1.70
	[1]	99.997	100	20,700	0.959	95.9

[1] P. Nilsson et al., "Hardware implementation of the exponential function using taylor series," in NORCHIP, 2014.

Outline

- Background
- Approximate Taylor series
- **Cross-layer optimization**
- Performance evaluation
- **Case study on AdEx neuron**
- Conclusion
- □ Future work

Case study on AdEx neuron

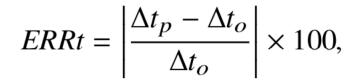
- Adaptive Exponential (AdEx) Neuron Simulation
 - Key component in brain simulation
 - Fires spike after membrane potential crosses threshold
 - Differential equations model injection current and membrane potential.

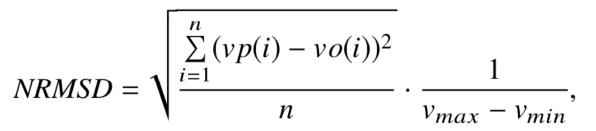
$$C\frac{dV}{dt} = -g_L(V - E_L) + g_L \cdot \Delta_T \cdot \exp(\frac{V - V_T}{\Delta_T}) + I - w,$$
$$\tau_w \frac{dw}{dt} = a(V - E_L) - w,$$

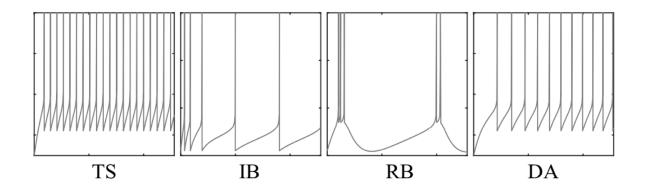
If
$$V > 0$$
 then $\begin{cases} V \to V_r, \\ w \to w_r = w + b, \end{cases}$

Case study on AdEx neuron

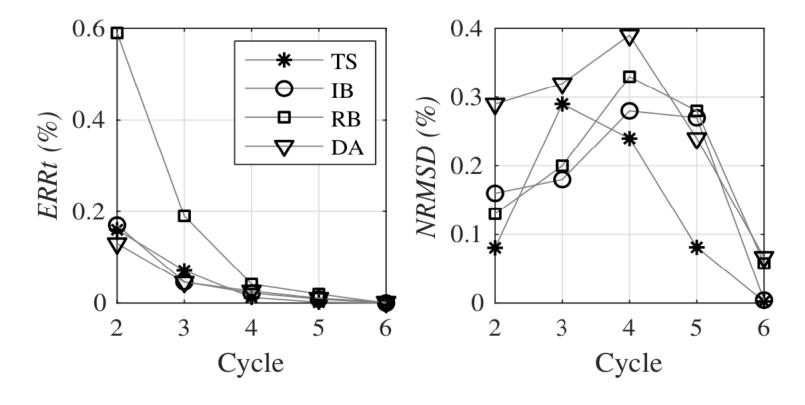
- Spiking metrics
 - Timing error
 - Percent error of spike response time
 - Value error
 - Normalized root mean square deviation







Case study on AdEx neuron



Time Error

Value Error

Outline

Background

- **Approximate Taylor series**
- **Cross-layer optimization**
- Performance evaluation
- Case study on AdEx neuron
- Conclusion
- □ Future work

Conclusion

- Negligible accuracy loss with a significant drop in power, area, and latency
- Accuracy drop from 99.997% (baseline design) to 99.7% while saving 96% energy, 94.5% area, and 82.5% latency
- Cross-layer optimization framework for SECO generalizable to other designs
- Evaluated the algorithm and design's efficacy on Adaptive Exponential Neuron

Outline

Background

- **Approximate Taylor series**
- **Cross-layer optimization**
- Performance evaluation
- Case study on AdEx neuron
- Conclusion
- **Given Setup Future work**

Further work

- Create full processing unit with combined approximate computing methods
- Evaluate on **full neural network**
- Explore **Binary Expansion** opposed to Taylor Series expansion

Thank you! Q & A

Di Wu, Tianen Chen, Chienfu Chen, Oghenefego Ahia, Joshua San Miguel, Mikko Lipasti, and Younghyun Kim University of Wisconsin-Madison

