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Executive Summary
q Incremental approximation of exponentiation via Taylor series.

q Cross-layer optimization framework for energy-accuracy tradeoff, 
including algorithm-level and circuit-level.

q Application of the proposal to adaptive exponential integrate-and-
fire neuron.
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q Performance evaluation
q Case study on AdEx neuron
q Conclusion
q Future work
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Background – Approximate computing
Ø Reduced accuracy for high energy efficiency
• Circuit-level
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V. Gupta, etc., IMPACT: IMPrecise adders for low-power approximate computing, 2011
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Truncation DRAM refresh time tuning



Background – Approximate computing
Ø Reduced accuracy for high energy efficiency
• Circuit-level
• Algorithm-level
• Storage-level
• System-level: A combination of all
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Background – Approximate computing
Ø Reduced accuracy for high energy efficiency
• Circuit-level
• Algorithm-level
• Storage-level
• System-level

Ø Energy-accuracy tradeoff
• Design-time fixed
• Run-time tunable
• Input-aware
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Background – Existing Exponentiation Unit
Ø Floating point
• High accuracy
• Long latency 
• High energy
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M. Langhammer, Single Precision Logarithm and Exponential Architectures for Hard Floating-
Point Enabled FPGAs, 2017



Background – Existing Exponentiation Unit
Ø Floating point
• High accuracy
• Long latency 
• High energy

Ø Fixed point
• Taylor series
• Fixed Taylor terms
• Fixed precise coefficients
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P. Nilsson, Hardware implementation of the exponential function using Taylor series, 2014



Our goal
Ø Reduced accuracy for high energy efficiency
• Circuit-level
• Algorithm-level
• Storage-level
• System-level

Ø Energy-accuracy tradeoff
• Design-time fixed
• Run-time tunable
• Input-aware
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Approximate Exp
via Taylor series
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Approximate Taylor series
Ø Conventional Taylor series
• Accurate but not efficient
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Qn is the shifting offset
Sn is the sign
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Approximate Taylor series
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Approximate Taylor series
Ø Resultant architecture
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Double-sided 
expansion



Approximate Taylor series
Ø Resultant architecture
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Approximate Division



Approximate Taylor series
Ø Resultant architecture
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Multiplication skipping



Approximate Taylor series
Ø Resultant architecture
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Taylor term accumulation
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Cross-layer optimization – Benefit
Ø Varying run-time demands
• Static design-time optimization is not always satisfying

Ø Achieving the best application-level approximation
• Isolated circuit design is usually for uniform input
• Unknown input distribution leads to uncontrollable output quality
• To the limits of approximation

Ø Cross-layer optimization bridges approximate circuits and real 
applications
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Cross-layer optimization – Flow
Ø Algorithm level
• Find the best parameters
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1. multiplication skipping
2. approximate division
3. double-sided expansion



Cross-layer optimization – Flow
Ø Algorithm level
• Find the best parameters

Ø Circuit level
• Find the best approximate multiplier from verified library
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V. Mrazek, EvoApproxSb: Library of approximate adders and multipliers for circuit design and 
benchmarking of approximation methods, 2017



Cross-layer optimization – Algorithm
Ø Algorithm level
• Optimized greedy search: discrete 

gradient descent
• Large discrete parameter space
• Regard output error as gradient
• Choose the parameter with the least 

error at each order
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Cross-layer optimization – Algorithm
Ø Circuit level
• Input distribution aware
• Weighted output error

• Select proper multipliers from the verified library via error prediction
• Exhaustive profiling on selected approximate multipliers
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Performance evaluation – Hardware
Ø Static Design-time optimization

a) Varying bitwidth M
b) Varying input distribution (U~uniform, N~ Gaussian)
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Each point refers to 
a unique accuracy budget.
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Performance evaluation – Hardware
Ø Dynamic run-time energy-accuracy scaling

a) Varying bitwidth M
b) Varying input distribution (U~uniform, N~Gaussian)
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Each point refers to 
a cycle during computing.
Right points have more 
terms.
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Performance evaluation – Hardware
Ø Input variation affects dynamic run-time scaling

a) Different inputs to the circuit for uniform~U(0, 1)
b) Different inputs to the circuit for Gaussian~N(0.25, 0.1)
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Each point refers to 
a cycle during computing.
Right points have more 
terms.
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Performance evaluation – Hardware
Ø Synthesized with Design 

Compiler
• TSMC 45 nm vs STM 65 nm
• Largest accuracy drop 

between 99.7% to 99.1%
• 23% of original power
• 5.4% of original area
• 17.5% of original latency
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[1] P. Nilsson et al., “Hardware implementation of the exponential function using taylor series,” in NORCHIP, 2014.
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Case study on AdEx neuron
Ø Adaptive Exponential (AdEx) Neuron 

Simulation
• Key component in brain simulation
• Fires spike after membrane potential 

crosses threshold
• Differential equations model injection 

current and membrane potential.

36



37

Case study on AdEx neuron
Ø Spiking metrics
• Timing error
• Percent error of spike 

response time
• Value error
• Normalized root mean 

square deviation 
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Case study on AdEx neuron

Time Error Value Error



Outline
q Background
q Approximate Taylor series
q Cross-layer optimization
q Performance evaluation
q Case study on AdEx neuron
q Conclusion
q Future work

39



4040

Conclusion

• Negligible accuracy loss with a significant drop in power, area,
and latency

• Accuracy drop from 99.997% (baseline design) to 99.7% while 
saving 96% energy, 94.5% area, and 82.5% latency

• Cross-layer optimization framework for SECO generalizable to 
other designs

• Evaluated the algorithm and design’s efficacy on Adaptive
Exponential Neuron
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Further work

• Create full processing unit with combined approximate 
computing methods

• Evaluate on full neural network
• Explore Binary Expansion opposed to Taylor Series expansion
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