
Mugi: Value Level Parallelism For Efficient LLMs
Daniel Price

daniel.price@ucf.edu
University of Central Florida

Department of ECE
Orlando, FL, USA

Prabhu Vellaisamy
pvellais@andrew.cmu.edu
Carnegie Mellon University

Department of ECE
Pittsburgh, PA, USA

John P. Shen
jpshen@cmu.edu

Carnegie Mellon University
Department of ECE
Pittsburgh, PA, USA

Di Wu
di.wu@ucf.edu

University of Central Florida
Department of ECE
Orlando, FL, USA

Abstract
Value level parallelism (VLP) has been proposed to improve
the efficiency of large-batch, low-precision general matrix
multiply (GEMM) between symmetric activations andweights.
In transformer based large language models (LLMs), there ex-
ist more sophisticated operations beyond activation-weight
GEMM. In this paper, we explore how VLP benefits LLMs.
First, we generalize VLP for nonlinear approximations, out-
performing existing nonlinear approximations in end-to-
end LLM accuracy, performance, and efficiency. Our VLP
approximation follows a value-centric approach, where im-
portant values are assigned with greater accuracy. Second,
we optimize VLP for small-batch GEMMs with asymmetric
inputs efficiently, which leverages timely LLM optimizations,
including weight-only quantization, key-value (KV) cache
quantization, and group query attention. Finally, we design
a new VLP architecture, Mugi, to encapsulate the innova-
tions above and support full LLM workloads, while provid-
ing better performance, efficiency and sustainability. Our
experimental results show that Mugi can offer significant
improvements on throughput and energy efficiency, up to
45× and 668× for nonlinear softmax operations, and 2.07×
and 3.11× for LLMs, and also decrease operational carbon
for LLM operation by 1.45× and embodied carbon by 1.48×.

CCS Concepts: •Hardware→Application-specific VLSI
designs; Emerging architectures; Arithmetic and datapath
circuits; • Computer systems organization → Parallel
architectures.

Keywords: value-level parallelism, value reuse, data reuse,
computation reuse, unary computing, temporal coding, quan-
tization, general matrix multiplication, nonlinear approxima-
tion, large language model, KV cache, group query attention
ACM Reference Format:
Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu. 2026.
Mugi: Value Level Parallelism For Efficient LLMs. In Proceedings of
the 31st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’26, Pittsburgh, PA, USA
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790189

DNN

Activation Weight

FP8 FP8

Operations beyond GEMM

ReLU

LLM

BF16 INT4 SiLU/GELU softmax/exp KV cache

3 2 1

4

GEMM Nonlinear

Figure 1. Challenges for LLM inference using VLP.

’26), March 22–26, 2026, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 19 pages. https://doi.org/10.1145/3779212.3790189

1 Introduction
Modern artificial intelligence (AI) has been betting on deep
neural networks (DNNs) for over a decade [35]. A great deal
of software and hardware research has been dedicated to
improving the efficiency of GEMM, as it accounts for over
90% of the total runtime [31]. A key insight from this body
of work is that low numerical precision gives good efficiency
and accuracy. Previous research has proposed and applied
narrower data formats symmetrically to the activations and
weights of GEMM, e.g. BF16 [32], DLFloat16 [2], CBFloat [51],
FP8 [41]. For offline workloads that process large-batch, low-
precision data, value level parallelism (VLP) can potentially
improve performance and efficiency by avoiding redundant
computations, as shown by a Carat design [46], with details
given in Section 2.1.
Challenges. Recent AI advancements have given rise to gen-
erative AI workloads, e.g., transformer-based large language
models (LLMs) [64]. LLMs exhibit complicated operations
beyond activation-weight GEMM, for which VLP is designed.
Naturally, a research question is raised: can VLP address di-
verse LLM operations? Figure 1 highlights the challenges.

1 First, prior VLP architectures do not support LLM non-
linear operations, such as such as SiLU [17], Swish [56],
GELU [25], and softmax. These operations are far more com-
plicated than the ReLU predecessor [20] and account for sig-
nificant runtime if not optimized [9, 34, 55, 61, 72], despite
various software [45, 68] and hardware [27, 42, 66, 67, 72]
solutions being proposed.

https://orcid.org/0009-0007-0571-7413
https://orcid.org/0009-0007-7750-8725
https://orcid.org/0000-0002-7225-0629
https://orcid.org/0000-0001-9775-8026
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790189
https://doi.org/10.1145/3779212.3790189

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

2 Second, prior VLP architectures misalign the trending
asymmetric quantization in LLM inference, offering subopti-
mal efficiency. Memory-intensive LLMs outgrow the mem-
ory capacity in mobile devices easily [16, 43, 49]. BF16-INT4
quantization has been exploited on both weight [19] and
KV cache [26] to combat the large memory footprint while
preserving accuracy. But prior Carat only supports FP8 [46].

3 Third, prior VLP architectures are not optimized to for
small-batch inputs, leading to suboptimal efficiency. LLMs
usually use a small batch size, such as 8, ensure real-time
inference, since large batch sizes linearly worsen the infer-
ence latency [1, 81] and violate the system-level objectives
(around 200 ms) [10, 59],

4 Fourth, existing AI architectures dedicate separate ma-
trix and vector units for nonlinear operations and GEMM,
increasing the carbon emission and lowering sustainability.
The nonlinear hardware increases on-chip area and embod-
ied carbon during manufacture, which could outweigh the
operational carbon during LLM execution, especially for
more advanced technologies [22].
Proposal. To overcome the challenges above, we craftMugi,
a new VLP architecture that support nonlinear approxima-
tion for the first time and asymmetric, small-batch GEMM,
as well as reusing the array for both nonlinear operations
and GEMM for efficient LLMs. First,Mugi orchestrates the
first-to-date VLP support for nonlinear approximation.Mugi
approximates critical nonlinear operations in LLMs, such as
softmax, SiLU, and GELU. Mugi adopts input approximation
and generates a precise output for an approximate input,
in contrast to common output approximation with precise
input [27, 42, 66, 67, 72]. VLP approximation is value centric
and assign greater accuracy to more important inputs.
Moreover, Mugi is optimized for asymmetrically quan-

tized, small-batch GEMMs, that are not compatible in prior
VLP designs [46]. LLMs leverages weight-only quantization
(WOQ) [8, 13, 19, 28, 38, 39] for activation-weight GEMM
and KV cache quantization (KVQ) [26, 33, 60, 82, 83] for
activation-activation GEMM, introducing BF16-INT4 GEMM.
Mugi supports such asymmetric quantization by customizing
the data format and optimized mapping. This optimization
ensures high utilization for both WOQ with small-batch in-
put and KVQ with grouped query attention (GQA) [3]. We
additionally minimize the buffer cost in Mugi over Carat via
broadcasting and output buffer leaning.

Last but not least, Mugi synergizes the nonlinear approxi-
mation and GEMM optimizations and maximally reuse the
chip budget for LLMs. This allows Mugi to execute full LLM
workloads efficiently and decrease area overhead, both of
which directly correlate to a decrease in operational and
embodied carbon.

The contributions of this paper are summarized as follows:

• We formulate value level parallelism for nonlinear ap-
proximation, which adopts input approximation in a
value-centric manner.

• We optimize value level parallelism asymmetric, small-
batch GEMM, using timely LLM optimizations, such
as quantization and group query attention.

• We synergize the nonlinear approximation and GEMM
optimization above in one Mugi architecture to run
full LLM workloads.

• We conduct experiments on multiple LLMs usingMugi
and demonstrate good improvements in performance,
efficiency and sustainability.

This paper is organized as follows. Section 2 reviews the
background. Section 3 articulates VLP approximation. Sec-
tion 4 describes ourMugi architecture, with evaluations in
Section 5 and Section 6. Section 7 and Section 8 discuss and
conclude this paper.

2 Background
2.1 Value Level Parallelism
Value level parallelism (VLP) was first proposed for GEMM
operations on large-batch, low-precision data [46], with an
example for vector-scalar multiplication and vector-vector
outer product given in Figure 2. (a) shows the temporal cod-
ing of a variable 𝑖 , done by a temporal converter (TC) in
green, which is essentially an equivalence logic. When input
𝑖 , of value 3, equals the number in counting-up sequence (i.e.,
when the counter 𝑐 reaches 3 in the rectangle), the TC asserts
a temporal spike in red at the 3rd cycle; otherwise, no spikes
is generated, indicated by the bold segments in black. (b) and
(c) depicts transforming a multiplication between 𝑖 = 3 and
𝑤 = 1 into the accumulation of𝑤 over time. At cycle 𝑖 , the
accumulation outputs the correct product 𝑖𝑤 , equivalent to
1 + 1 + 1 = 3. (d) exemplifies temporal subscription. Saving
the correct product (Val) into the register in yellow is en-
abled by the temporal spike (Sub), essentially selecting its
corresponding 𝑖𝑤 product of 3 × 1 = 3 in red. (e) extends to
scalar-vector multiplication between a scalar𝑤 and a vector
®𝑖 . The accumulation results of 𝑤 are shared by all vector
elements. Each vector element subscribes to its own product
in parallel, based on it own input (red and blue). We call such
parallel, value-dependent sharing across multiple inputs as
value reuse. Value reuse and temporal subscription together
formulate VLP. (f) shows that a vector-vector outer product
can be obtained by organizing multiple columns of scalar-
vector multiplication into a 2D array. Carat maps batched
input activations to rows and weights to columns, with the
number of columns matching the temporal spike latency
to avoid resource overprovision and maximize the resource
utilization. Since the temporal spike latency increases expo-
nentially, 2𝑛 cycles for an 𝑛-bit input, it is more beneficial to
keep VLP at smaller bitwidths [74, 80]. Therefore, Carat opts

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

(e)

(a)

(d)

TCi=3
Sub

w=1 ACC
Val = iw

(f)

Ba
tc

he
d

ac
tiv

at
io

ns

ACC ACC ACC

TC
TC
TC

Weights

i=3
=

c=0
i=3

=
c=1

i=3
=

c=3
i=3

w=1
x(b) 3 w ACC(c) 543210

3 01245

TCi[0]=3

w=1 ACC
Val

TCi[1]=1

TCi[k]=3

…

iw

……

3 01245
3

3

3

1

Figure 2. Illustration of VLP, detailed in Section 2.1.

for mapping the batch dimension to rows to achieve scalable
performance with large batch sizes.

2.2 Nonlinear Implementations
2.2.1 Software Implementation. We take nonlinear op-
erations in LLMs such as softmax, SiLU [17], and GELU [25]
as examples, formulated in Equations 1, 2, and 3 [47], where
erf means error function. To ensure numerical stability by
avoiding overflow in exp, softmax inputs are usually sub-
tracted by the maximum of all inputs. Without KV cache,
softmax can take more than 40% of the total runtime in
transformer models [9, 34, 55, 61]. The GELU function is
commonly approximated as shown in Equation 4 or Equa-
tion 5 [47]. The functions easily take tens even hundreds of
cycles to finished [45, 68].

softmax =
𝑒 (𝑥𝑖 −𝑚𝑎𝑥)∑
𝑒 (𝑥𝑖 −𝑚𝑎𝑥) (1) SiLU=

𝑥

1+𝑒−𝑥 (2) GELU=
𝑥

2

[
1+erf

(
𝑥
√
2

)]
(3)

GELU=
𝑥

2

(
1 + Tanh

(√︂
2
𝜋

·
(
𝑥 + 0.044715 · 𝑥3))) (4)

GELU=
𝑥

2
(
1 + Tanh

(
0.7978845608𝑥 ·

(
1.0 + 0.004715 · 𝑥2))) (5)

2.2.2 Piecewise Linear Hardware Approximation. To
ensure high efficiency, hardware approximations are pro-
posed. Piecewise linear (PWL) approximation [27, 67] sepa-
rates the function curve into multiple linear segments based
on the input range and computes the result based on which
segment an input falls into. PWL approximations need to
buffer the segment coefficients and identify the correspond-
ing segment of an input via comparison. For an input vector,
a dedicated set of buffers, comparators, and arithmetic units
is needed for each element, increasing hardware overheads.

2.2.3 Taylor SeriesHardwareApproximation. Another
popular hardware approximation is a Taylor series [42, 66, 71,
72, 77]. The coefficient of each Taylor term is precomputed.
With Horner’s rule, the computation can be transformed in
to concatenated multiply-accumulate (MAC) operations [72].
This transformation allows for vectorized implementation,
where coefficients can be shared by all inputs efficiently.
However, Taylor approximation exhibits poor accuracywhen

inputs are far from the Taylor expansion point. Allowing
more points introduces addition hardware overheads.
Summary.Different implementations offer distinct accuracy
and efficiency tradeoffs, and this work introduces a novel
VLP approximation for nonlinear operations.

2.3 Large Language Model Inference
Modern LLMs are mainly built on attention-based transform-
ers [64]. During prefilling, multiple tokens are processed in
parallel, resulting in GEMM operations. During decoding,
one token is processed, resulting in GEMV operations, unless
input tokens are batched. However, even with batched input,
normal attention still performs GEMV for KV cache [50].

2.3.1 Grouped Query Attention. GEMV in normal at-
tention severely lowers the hardware utilization [83]. To
mitigate the problem, grouped query attention (GQA) is pro-
posed, where multiple Q tokens share the same KV cache [3],
creating small-batch GEMM. In this paper, Mugi benefits
from GQA to improve the hardware utilization.

2.3.2 Weight-Only Quantization. Low-bit quantization
is now the de facto technique to reduce the memory foot-
print [36]. Most prior works adopt symmetric quantization,
e.g., INT8 or FP8 for both inputs and weights [12, 16, 36, 44],
which are still too memory inefficient for LLMs. Developers
resort to sub-byte quantization for weights, while keeping
the inputs in floating point format, e.g, BF16-INT4 weight
only quantization (WOQ) [8, 13, 19, 28, 38, 39].

2.3.3 KVCacheQuantization. KV cache introduces addi-
tional memory footprint on top of weights, leading to poten-
tial out-of-memory errors [83]. BF16-INT4 KV cache quan-
tization (KVQ) has been leveraged to compress KV cache
with minimum accuracy drop [26, 33, 60, 82, 83]. Moreover,
WOQ and KVQ can be combined together, reporting just a
0.02 increase in perplexity [26].
Summary. These LLM optimizations are timely and allow
optimizing asymmetric, small-batch GEMM efficiently.

2.4 Sustainable Computing
Carbon emissions have become a growing concern in the AI
world [29] and AI inference reportedly contributes up to 90%
of datacenter costs [6]. To quantify carbon emissions, carbon
modeling focuses on operational carbon for workload deploy-
ment and embodied carbon for infrastructure manufacture
over the full lifetime [18, 48, 70]. The equivalent emissions
(CO2eq) are formulated in Equation 6, where E, CI, CPA are
short for energy and carbon intensity, carbon emitted per
unit area. Embodied carbon is taking over operational carbon
as the majority of contributed emissions [18, 70].

Operational CO2eq = 𝐸 · 𝐶𝐼 (6) Embodied CO2eq =𝐴𝑟𝑒𝑎 · 𝐶𝑃𝐴 (7)

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

Summary.OurMugi shares the hardware for both nonlinear
operation and GEMM, and contributes to reduction of both
operational and embodied carbon.

3 VLP Nonlinear Approximation
3.1 Formulation
We formulate VLP approximation as in Figure 3. (a) depicts
a conventional lookup table (LUT) for exp, indexing with an
address and receiving its corresponding value. (b) indicates
that such a conventional LUT can only sequentially process
different inputs, limiting the scalability. To alleviate this re-
striction, (c) splits the lookup processes into two steps. First,
a row of exp values with consecutive input values are re-
trieved from the LUT, then the correct value can be selected
from that row. Such a split inspires VLP approximation. (d)-
(e) illustrates this split within VLP. (d) uses an input sign and
mantissa (i: S-M) to index the LUT row, and (e) then uses the
exponent (i: E) to select the final result from the row.

(f) details VLP approximationwithin a single row. 1 – 4 de-
notes four phases, i.e., input field split, value reuse, mantissa
temporal subscription, and exponent temporal subscription.
1 the input field split phase splits the input S-M-E (0-3-2)
into S-M (0-3) and E (2), as in (d)-(e). 2 the value reuse phase
organizes the LUT the same as that in (d), where each LUT
row contains all values for the same S-M. At each cycle, an
ascending address is sent to the LUT, and generates an out-
put LUT row, marked by bold lines. Overtime, LUT rows
are reused by different S-M values. 3 the mantissa temporal
subscription phase further splits the S-M to reuse LUT rows.
S-M (0-3) generates a temporal signal via the temporal con-
verter in green, subscribing to the row at the 3rd cycle with
a red fill. The LUT row will be stored into the yellow blocks
when a temporal spike arrives. 4 the exponent temporal
subscription leverages the temporal spike of the exponent
(E=2) to subscribe the final exp results from the LUT row, se-
lecting the value at the 2nd cycle with a blue outline. Starting
from the moment when the correct LUT row is subscribed
in 3 , the exponent also starts generating its own temporal
spikes. Therefore, the full VLP approximation requires the
total duration of both mantissa and exponent temporal spike
timing to finish.
(g) zooms into the single row for mantissa and exponent

temporal subscription. The LUT row subscription is indicated
by S-M. ‘-x’ here denotes all exponents. The corresponding
rows will be sent to the proper inputs, indicated by the bold
lines. The exponent subscription is indicated by the blue
outlined blocks. Following (f), this example selects the row
corresponding to an S-M of (0-3), subscribing at the 3rd cycle,
then subscribing where E=2, or at the 2nd cycle of 4 in (f).
This full process takes a total of 6 cycles, which is the sum
of two subscription.
(h-i) expands approximation to a full array, enabling ap-

proximation of vector ®𝑖 . By leveraging VLP, selected rows

can be shared across the array in parallel, individually sub-
scribing to their final result.

3.2 Input Approximation
VLP approximation favors lower-precision inputs to reduce
the duration of temporal spikes. However, popular data for-
mats have a wide mantissa field, e.g., BF16 mantissa has 7
bits. Therefore, in the input field split phase, we round the
input mantissa to fewer bits for softmax, SiLU and GELU.
Profiling shows that rounding introduces uniform errors to
the input mantissa values, as the mantissa are uniformly
distributed in softmax, SiLU and GELU, and this pattern is
consistent across models and modalities. We exclude these
results for simplicity.

3.3 Value-Centric Approximation
The approximation efficiency also suffers from wide expo-
nents, since both the temporal signal length and the LUT
row size grows exponentially with exponent bitwidth. Our
formulation leverages the insights that input exponents are
often clustered at a small range. We focus on these impor-
tant values, following a value-centric approach. We profile
the input distribution of softmax, SiLU and GELU in Fig-
ure 4. For softmax, exponent values are concentrated around
[−3, 4], despite input values being widely spread. Similar
observations also exist in SiLU and GELU. We define these
model-specific, important exponents as the LUT window,
and we only store the results for these exponents in the LUT.
However, a single mapping, with a set of inputs for value
reuse, might not cover the full range of important exponents.
Therefore, we opt for a sliding window for each mapping
and choose an optimal range, as shown in Figure 5.

3.4 Accuracy Impact
We explore the accuracy of different window sizes and bound-
aries as in Figure 6. We compare VLP approximation against
prior approximations, like Taylor series [42, 66], piecewise
linear (PWL) approximation [67], and partial approximation
(PA) [27]. For most models with full VLP approximation
(combined softmax/activation), Mugi shows better accuracy,
except for Llama 2, whose softmax distribution varies signif-
icantly across layers, as shown in Figure 4. To address this,
Figure 7 demonstrates per-layer tuning of Llama 2, selecting
the optimal LUT range for each layer. This mitigates accu-
racy loss, yielding perplexity values approaching those in
line with other approximation techniques.
Figure 8 further shows the accuracy of the nonlinear ap-

proximation. While VLP approximation does not exhibit the
best error, it has the best accuracy where inputs are impor-
tant, in term of magnitude and quantity. For softmax in layer
0, high exp accuracy for majority of the inputs (Figure 4)
propagates less errors to deeper layers. In deeper layers,
more inputs center around −10. Their output magnitudes
are smaller, e.g, adding 22k 𝑒−10 equals 𝑒0. Therefore, even

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

(a) (b)

(f)

(d)

i: S-M
=0-0

Addr Val
0-0-0 0-0-1 0-0-2

LUT row0-0-0 0-0-1 0-0-2
0-1-0 0-1-1 0-1-2

…

LUT: exp(S-M-E)

i=2
Addr

exp(0)

exp(2)

exp(4)

…

…

…

LUT

exp(2)
Val

(g)

i={0,1,2}
Addr Val

exp(0)exp(1)exp(2)
LUT rowexp(0)exp(1)exp(2)

exp(3)exp(4)exp(5)
…

LUT
(c)

(e)

i: E=0
Addr

exp(0-0-0)
Val

0-0-0 0-0-1 0-0-2
LUT row

S-M-E

i[0]=0
Addr

i[1]=2

i[k]=4

…

exp(0)
Val

exp(2)…

exp(4)

exp(0)

exp(2)

exp(4)

…

…

…

LUT

2
TCi: S-M=0-3

Addr
Val

LUT
LUT row

4
exp

0-3-2
i[0]: E=2

E=2
S-M=0-33

1

S-M-E

Time

LUT row
i: E=2 0-3-00-3-10-3-2

0-4-x 0-3-x 0-1-x0-2-x
126 345 07Cycle

(h)

1

2
TCi[0]: S-M=0-3

Addr
Val

TCi[1]: S-M=0-1

TCi[k]: S-M=0-3

…… …

LUT
LUT row

4
exp

0-3-2

0-1-1

0-3-0

i[0]: E=2

i[1]: E=1

i[k]: E=0

E=2

S-M=0-3

3

S-M-E

Time

LUT row
i[0]: E=2
i[1]: E=1

i[k]: E=0
…

0-3-00-3-10-3-2

0-3-00-3-10-3-2

0-1-00-1-2 0-1-1

0-4-x 0-3-x 0-1-x0-2-x
126 345 07Cycle(i)

Figure 3. VLP approximation for nonlinear operations, exp here, with a floating-point input 𝑖 , represented as S-M-E, denoting
the sign, mantissa and exponent. More details are in Section 3.1.

-16 -8 0
0
1
2 SM

7B

-16 -8 0

13B

-2 0 2
0

20
40 S

-8 0 8

-8 0 8
0

25
50 SM

-8 0 8

-8 0 8
0

15
30 S

-8 0 8

-16 -8 0
0
2
4 SM

Tiny

-12 -6 0

Large

-10 -5 0
0

2
G

-4 0

-8 0 8
0

30
60 SM

-8 0 8

-8 0 8
0

30
60 G

-8 0 8

-16 -8 0
0
2
4 SM

Tiny

-16 -8 0

Large

-8 0 8
0
5

10 G

-8 0 8

-8 0 8
0

25
50 SM

-8 0 8

-8 0 8
0

30
60 G

-8 0 8

-12 -6 0

1 SM
Base

-10 -5 00

1
G

-8 0 8
0

20
40 SM

-8 0 8
0

20
40 G

Llama 2 Whisper SwinV2 ViViT

Va
lu

e
Ex

p

Figure 4. Distribution of input values and exponents of nonlinear operations in transformer models. Profiled layers, stages,
and sequence lengths are detailed in Table 1. Cooler colors represent early layers, while warmer colors represent later layers.
Within each color, lighter lines represent shorter sequence lengths, while darker lines represent longer sequence lengths.
Softmax, SiLU, and GELU are abbreviated as SM, S, and G, denoting the nonlinear function within each window.

though VLP approximation is less accurate, it has negligible
impacts compared to inputs closer to 0. Another contributor
to overall accuracy is that uniform input errors from input
approximation can cancel out each other’s output errors dur-
ing summation. For SiLU/GELU, inputs consistently cluster
around 0, where VLP approximation is more accurate.

4 Mugi Architecture
We introduceMugi, a novel VLP architecture to support non-
linear approximation and asymmetric, small-batch GEMM,
as well as reusing the array for both nonlinear operations
and GEMM for efficient LLMs.Mugi supports nonlinear soft-
max, SiLU and GELU operations.Mugi supports BF16-INT
GEMM, leveraging timely GQA, WOQ and KVQ optimiza-
tions. The support for both nonlinear operations and GEMM

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

E-6 E-5 E-4 E-3 E-2 E-1 E0 E1 E2 E3 E4 E5
LUT window (S-M)

E-3 E-2 E-1 E0 E1 E2 E3 E4
Slide window (S-M)

TCi[0]: S-M

TCi[1]: S-M

TCi[k]: S-M

…… …

Figure 5. An example sliding window for input mapping.
This example chooses the exponent range of [−3, 4] for the
current set of inputs, from the full LUT window with the
exponent range of [−6, 5]. The sliding window size of 8 is
chosen tomatch the VLP arraywidth in prior VLPworks [46].
This sliding window can slide left and right for eachmapping,
aiming to minimize the accuracy loss.

above are mixed in one singular architecture with maximized
resource reuse. Figure 9 outlines our Mugi architecture. It
double buffers all memory hierarchies to hide access latency.
We follow prior VLP designs and set the number of columns
to 8 (matching 3-bit mantissa) for optimal performance and
efficiency tradeoffs [46].

1 is for the input field split phase. M-proc splits the sign
(S) and mantissa (M) fields for BF16 input and approximates
the mantissa to 3-bit via rounding (R). For a given mapping,
E-proc processes the exponent (E) values to determine the
maximum or minimum exponent, which determines the LUT
sliding window in the SW block. The sliding window size is
fixed to 8 to match array width. It also clamps the exponent,
underflowing to 0, and overflowing depending on the non-
linear operation. In softmax, overflow values are set to the
maximum value of the LUT, while SiLU/GELU passes values
through directly. The exponent is sent to post processing
(PP) block for the final result.

2 is for the value reuse phase. The iSRAM acts as the LUT,
and the pre-computed, output LUT window is sent to the SW
block to generate the sliding window. The sliding window is
sent to iFIFO to stagger the input by one cycle to adjacent
columns. This staggering ensures fully pipelined execution
in our VLP approximation.

3 is for the mantissa temporal subscription phase. The
temporal converter (TC) converts the approximate mantissa
(M) to a temporal signal using the counter (CNT) and leaves
the sign (S) to PP. The temporal signal is then pipelined
in a row via the T register in the processing element (PE).
Temporal subscription is done using the AND gate in each PE.
Within a PE column (Figure 9 (d)), both the counter value and
sliding window are broadcast. Within a PE row (Figure 9 (e)),
the subscribed results will be sent out via OR gates, since
only one column will be activated by the pipelined temporal
spike. Two sets of OR gates, together with a small FIFO,

double buffer the results from two spikes. Sign conversion
(SC) XORs all signs to generate the final result.

4 is for the exponent temporal subscription phase. The
PP block takes the exponent from the E-proc and generates a
MUX selection signal. If no special values exist, this selection
signal is the temporal spike from the exponent, subscribing
the correct element in the sliding window. If there are special
values, the multiplexer outputs the proper special values
among Zero, infinity (INF) and Not-a-Number (NaN).

4.1 Nonlinear Approximation
To better understand how Mugi works, we give a walk-
through example in Figure 10. Here, rows apply broadcasting,
while columns adopt pipelining. The LUT (iSRAM) stores
pre-computed nonlinear results, and each LUT row contains
a vector of results for one mantissa. The LUT size will double
if the nonlinear operation has both positive and negative
inputs. In 0 – 7 , TC or PP is red if a temporal signal (yellow)
arrives. In 8 – 9 , a new mapping is marked with blue.

In the first input field split phase, the 8-bit BF16 mantissa
is rounded to INT4 with a 3-bit mantissa magnitude to gen-
erate an 8-cycle temporal signal. In the second value reuse
phase, LUT row vectors are read out per cycle in a mantissa-
ascending order, and reused in the next subscription phase.
Note that vectors from different LUT columns are sent to
the array in a staggered manner, as the temporal signal is
pipelined across columns. In the third mantissa temporal
subscription phase, temporal signals are generated from ap-
proximated mantissa. For each mantissa, the TC turns red
upon the coincidence of the input value and equivalent clock
cycle. The fourth exponent temporal subscription phase sub-
scribes to the correct result from the LUT vector, indicated
by the red exponent (e). The sign (s) is omitted here as it is
always negative. The cycle index to get the final result is the
sum of mantissa and exponent values. After 8 cycles of red
input, at cycle 8, new blue inputs enter the array.
The above VLP approximation works for element-wise

nonlinear operations, e.g., exp and SiLU/GELU. Additional
summation and division are needed for softmax. We first
compute the exp for all inputs (maximum subtracted). To
perform the summation, when we compute exp, the output
accumulator (oAcc) simultaneously accumulates the exp re-
sults. Once all exp operations finish, we store the sum to the
oSRAM from the oFifo. Next, we divide all exp results by the
sum using the vector multiplication array (Vec) in Figure 9.
This array multiplies the exp by the reciprocal of the sum in
one cycle. To ensure high utilization, we map both attention
head and batch across rows for softmax.

4.2 GEMM Optimization
Mugi optimizes GEMM over prior VLP designs in two ways.
Format Customization. Asymmetric BF16-INT4 GEMM
imposes challenges to Carat. As Carat maps FP8 input across

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

0 1 2 3 4

8
9

10
11
12VL

P
SM

6.71 6.28 6.89 6.93
6.72 6.28 6.89 6.91
6.72 6.28 6.89 6.90
6.72 6.28 6.89 6.90
6.72 6.28 6.89 6.90

Llama 2 7B

0 1 2 3 4

6.71 5.99 6.53 6.54
6.71 5.99 6.53 6.54
6.71 5.99 6.53 6.54
6.71 5.99 6.53 6.54
6.71 5.99 6.53 6.54

Llama 2 13B

-2 -1 0 1 2

20.3 12.0 11.1
20.3 12.0 11.1
20.3 12.0 11.1
20.3 12.0 11.1
20.3 12.0 11.1

Whisper Tiny

-2 -1 0 1 2

4.90 4.42 4.00 3.39
4.90 4.42 4.00 3.39
4.90 4.42 4.00 3.39
4.90 4.42 4.00 3.39
4.90 4.42 4.00 3.39

Whisper Large

-2 -1 0 1 2

0.90 0.86 0.82 0.94 0.95
0.90 0.86 0.82 0.94 0.95
0.90 0.86 0.82 0.94 0.95
0.90 0.86 0.82 0.94 0.95
0.90 0.86 0.82 0.94 0.95

SwinV2 Tiny

-2 -1 0 1 2

0.71 0.69 0.68 0.69 0.76
0.71 0.69 0.68 0.69 0.76
0.71 0.69 0.68 0.69 0.76
0.71 0.69 0.68 0.69 0.76
0.71 0.69 0.68 0.69 0.76

SwinV2 Large

0 1 2 3 4

3.38 2.00 1.76 1.77 1.77
3.38 2.00 1.76 1.77 1.77
3.38 2.00 1.76 1.77 1.77
3.38 2.00 1.76 1.77 1.77
3.38 2.00 1.76 1.77 1.77

ViViT

0 1 2 3 4

8
9

10
11
12VL

P
S/

G 6.37 5.76 5.76 5.76 5.81
6.37 5.76 5.76 5.76 5.76
6.37 5.76 5.76 5.76 5.76
6.37 5.76 5.76 5.76 5.76
6.37 5.76 5.76 5.76 5.76

0 1 2 3 4

6.02 5.21 5.20 5.20 5.23
6.02 5.21 5.20 5.20 5.20
6.02 5.21 5.20 5.20 5.20
6.02 5.21 5.20 5.20 5.20
6.02 5.21 5.20 5.20 5.20

0 1 2 3 4

22.4 22.4 22.4 22.5
22.4 22.4 22.4 22.4
22.4 22.4 22.4 22.4
22.4 22.4 22.4 22.4
22.4 22.4 22.4 22.3

-2 -1 0 1 2

3.52 5.11 5.10
3.52 5.12 5.11
3.53 5.13 5.11
3.54 5.09 5.14
3.53 5.08 5.10

-8 -7 -6 -5 -4

6.78 4.44 0.82 0.92 0.91
6.61 4.94 0.87 0.91 0.91
6.71 3.59 0.89 0.91 0.91
6.22 1.91 0.88 0.90 0.90
5.49 1.88 0.91 0.94 0.93

-3 -2 -1 0 1

0.72 0.72 0.70 1.23 7.34
0.71 0.72 0.73 1.57 7.45
0.71 0.72 0.71 1.35 7.21
0.70 0.71 0.68 1.03 6.21
0.74 0.75 0.79 1.57 5.06

-7 -6 -5 -4 -3

6.54 1.75 1.73 1.76 1.76
6.27 1.87 1.75 1.77 1.77
5.26 1.84 1.75 1.76 1.77
3.86 1.83 1.76 1.76 1.78
3.88 2.05 1.97 2.04 1.93

-20 -19 -18 -17 -16

20
22
23
24
25PW

L
SM

5.76 5.76 5.76 5.76 5.75
5.76 5.76 5.76 5.75 5.75
5.76 5.76 5.76 5.75 5.75
5.76 5.76 5.75 5.75 5.75
5.76 5.75 5.75 5.76 5.75

-20 -19 -18 -17 -16

5.19 5.19 5.19 5.19 5.19
5.19 5.19 5.19 5.19 5.19
5.19 5.19 5.19 5.19 5.19
5.19 5.19 5.19 5.19 5.19
5.19 5.19 5.19 5.19 5.19

-21 -20 -19 -18 -17

23.8
23.0 24.0

22.6
24.9

-20 -19 -18 -17 -16

5.15 5.20 5.11 5.15 5.11
5.19 5.11 5.14 5.19 5.12
5.09 5.12 5.20 5.09 5.08
5.12 5.17 5.00 5.11 5.12
5.14 5.08 5.09 5.14 5.05

-24 -23 -22 -21 -20

0.87 0.87 0.92 0.91 0.90
0.93 0.90 0.87 0.90 0.92
0.87 0.90 0.90 0.91 0.89
0.90 0.91 0.90 0.92 0.94
0.93 0.90 0.91 0.92 0.91

-24 -23 -22 -21 -20

0.69 0.70 0.72 0.71 0.71
0.72 0.70 0.70 0.71 0.73
0.70 0.71 0.71 0.72 0.71
0.71 0.72 0.71 0.72 0.73
0.73 0.71 0.72 0.72 0.71

-24 -23 -22 -21 -20

1.77 1.77 1.78 1.78 1.77
1.77 1.77 1.77 1.78 1.77
1.78 1.77 1.78 1.77 1.77
1.77 1.78 1.77 1.77 1.77
1.78 1.77 1.77 1.78 1.77

3 4 5 6 7

20
22
23
24
25PW

L
S/

G 5.79 5.77 5.79 5.84 5.90
5.78 5.78 5.78 5.80 5.82
5.78 5.77 5.78 5.82 5.94
5.78 5.76 5.78 5.79 5.82
5.78 5.76 5.77 5.82 5.84

3 4 5 6 7

5.32 5.21 5.21 5.25 5.29
5.32 5.21 5.21 5.22 5.23
5.32 5.21 5.21 5.23 5.29
5.32 5.20 5.21 5.21 5.23
5.32 5.20 5.21 5.23 5.24

3 4 5 6 7

22.5 22.9 23.0 23.7 24.8
22.4 22.9 23.5 23.5 24.2
22.4 22.9 23.0 23.3 24.2
22.4 22.7 23.2 23.7 23.9
22.4 22.9 23.0 22.9 23.3

7 8 9 10 11

5.36 5.43 5.26 5.18 5.13
5.28 5.32 5.00 4.93 5.26
5.36 5.33 5.25 5.19 4.98
5.25 5.34 5.37 5.25 5.47
5.24 5.35 5.34 5.31 5.19

3 4 5 6 7

0.91 0.91 0.91 0.92 0.92
0.91 0.90 0.91 0.91 0.91
0.91 0.90 0.91 0.91 0.93
0.90 0.91 0.90 0.91 0.91
0.91 0.91 0.90 0.91 0.92

7 8 9 10 11

0.72 0.72 0.72 0.71 0.72
0.72 0.72 0.72 0.72 0.73
0.72 0.72 0.72 0.72 0.71
0.73 0.72 0.72 0.73 0.72
0.72 0.72 0.73 0.73 0.72

3 4 5 6 7

1.77 1.78 1.78 1.79 1.79
1.77 1.77 1.77 1.78 1.80
1.77 1.77 1.78 1.78 1.78
1.77 1.77 1.77 1.78 1.80
1.77 1.77 1.78 1.78 1.78

-7 -6 -5 -4 -3

6
7
8
9

10Ta
yl

or
 S

M 5.94 5.84 5.81 5.81 5.88
5.84 5.80 5.78 5.80 5.87
5.80 5.79 5.78 5.80 5.84
5.79 5.78 5.78 5.78 5.82
5.78 5.78 5.78 5.78 5.81

-7 -6 -5 -4 -3

5.35 5.29 5.27 5.28 5.40
5.29 5.26 5.23 5.27 5.37
5.26 5.24 5.24 5.26 5.32
5.25 5.24 5.24 5.24 5.30
5.24 5.24 5.24 5.23 5.27

-4 -3 -2 -1 0

22.9 22.4 22.9
22.5 22.2 22.4
22.2 22.4 21.7
22.2 22.5 21.8
21.9 22.5 21.8

-9 -8 -7 -6 -5

5.11 4.45 4.69 4.89 5.04
4.44 4.67 4.91 5.01 5.05
4.67 4.89 4.99 5.05 5.08
4.86 4.97 5.06 5.08 5.11
4.96 5.04 5.06 5.08 5.10

-9 -8 -7 -6 -5

0.86 0.85 0.84 0.84 0.86
0.85 0.84 0.84 0.86 0.88
0.84 0.84 0.86 0.88 0.89
0.84 0.85 0.87 0.89 0.90
0.85 0.87 0.89 0.90 0.91

-9 -8 -7 -6 -5

0.70 0.70 0.69 0.69 0.69
0.70 0.69 0.69 0.69 0.70
0.69 0.69 0.69 0.70 0.70
0.69 0.69 0.70 0.70 0.71
0.69 0.70 0.70 0.71 0.71

-9 -8 -7 -6 -5

1.83 1.78 1.76 1.76 1.76
1.78 1.76 1.76 1.76 1.76
1.76 1.76 1.76 1.76 1.76
1.76 1.76 1.76 1.76 1.76
1.76 1.76 1.76 1.76 1.77

Base VLP PWL T

5.75 6.21 5.68 5.78

Base VLP PWL T

5.19 6.00 5.21 5.23

Base VLP PWL T

22.23 11.1 22.2 21.68

Base VLP PWL T

5.06 3.52 5.05 4.44

Base VLP PWL T

0.91 0.83 0.91 0.84

Base VLP PWL T

0.71 0.67 0.71 0.69

Base VLP PWL T

1.77 1.75 1.77 1.76

LU
T

Si
ze

Se
gm

en
ts

De
gr

ee
s

M
in/M

ax Exp
Segm

ent Range
Degree Center

Fu
ll

PP
L

Figure 6. Perplexity and loss heatmaps of transformer models, showing the best for each nonlinear operation separately
highlighted in orange (lower is better). Llama 2 and Whisper show perplexity, while Swin and Vivit show Loss. Combined
softmax/activation metrics are short right of the title, with VLP being on top and PWL on bottom. Boxes on the left denote
the approximation method, with softmax, SiLU and GELU abbreviated as SM, S, and G. The labels next to the boxes denote y
axis value and the labels on the right side denote x axis. LUT size refers to the number of exponents stored in the LUT, and
Min/Max exp denotes the maximum or minimum value used to create the LUT. For PWL, segment range (sr) denotes the
approximation range, with SM going from [sr, 0] and S/G going from [-sr, sr]. For taylor series, degrees denotes the number of
polynomial expansions used, while degree center is the center of the expansion. Empty boxes represent masked large values.
Each column’s table lists full end-to-end perplexity values (SM and S/G). The Taylor-series values, denoted T, include only SM.

0 5 10 15 20 25 30 35 40
5.4

5.6

5.8

6.0

6.2

PP
L

Llama 2 7B Final PPL: 5.98
Llama 2 13B Final PPL: 5.43

Figure 7. Per-layer perplexity tuning of Llama 2 (7B, 13B),
with final achieved perplexity noted in the legend. Tuning is
done progressively across layers.

rows, changing input to BF16 will prolong the temporal
signal from 8 (3-bit mantissa magnitude) to 128 cycles (7-bit),
prohibitively lowering the throughput. If INT4 weights were
mapped to rows, the FP8 datapath is wasted. To overcome
these, Mugi transposes the mapping, i.e., INT4 weight/KV
cache to rows with a slim INT4 datapath, and BF16 input/Q
token to columns. This mapping offers high utilization, since

LLM tokens are large enough to fill in all rows, and 8 Q tokens
in a group for GQA can fill in all columns. The customization
timely synergizes with the trends of LLMs, small batch sizes,
large token sizes, WOQ, KVQ and GQA, none of which are
compatible in Carat. WOQ and KVQ require dequantization
after GEMM, which is done by the vector array.
Buffer Minimization. Buffers (FIFOs) occupy significant
area in Carat, due to pipelining the inputs across rows and
double buffering in the output OR tree. The relevant cost
scales quadraticallywith the array size.Mugi solves this prob-
lem via broadcasting and output buffer leaning (optimizing
two FIFOs into one without functional changes), successfully
lowering the total buffer area by 4.5×.

With the optimizations above, GEMM can be exectued ef-
ficiently, following the flow in Figure 2. To ensure scalability,
we can further use a 2DmeshNetwork-on-Chip (NoC) to con-
nect multiple nodes. We consider output stationary dataflow
and inter-node accumulation, and GEMMs are evenly tiled
across nodes to enhance efficiency and utilization.

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

16 8 0-100%

-50%

0%
Exp PWL

-0.5 00%0%

6%

8 4 0-100%
-50%

0%

Exp Taylor

-0.5 0-3%
0%
1%

16 8 0

0%

100%
Exp Mugi

-0.5 0

-2%
0%
1%

5 0 5-100%

-50%

0%
SiLU PWL

-0.5 0.5-22%
0%

22%

5 0 5-100%

0%

SiLU PA

-0.5 0.5-7%
0%

10%

5 0 5
0%

50%

100%
SiLU Mugi

-0.5 0.5

-6%
0%
5%

5 0 5-100%

0%

GELU PWL

-0.5 0.5-34%
0%
34%

5 0 5
0%

50%

100%
GELU Mugi

-0.5 0.5

-6%
0%
5%

Figure 8. Relative errors against software implementation.
The most accurate configurations from Figure 6 are com-
pared. x and y axes are input values and relative error. 100%
error indicates flushing output to 0.

Table 1. Studied LLMs in this paper.

Model Llama2 [63] Whisper [54] SwinV2 ViViT

7B 13B 70B tiny large tiny large base

Batch size 1 - 32
layers 32 40 80 4 32 12 24 12
stages 4 4
attn heads 32 40 64 6 20 3 - 24 6 - 48 12
KV heads 32 40 8 6 20 3 - 24 6 - 48 12
Attn h dim 4096 5120 8192 384 1280 96-768 192-1536 768
FFN h dim 11008 13824 28672 1536 5120 384-3072 768-6144 3072
Seq len 4096 1500 64-4096 3136

Prof. layers 1/16/32 1/20/40 1/32/64 1/3/6 1/10/20 1/12 1/24 1/6/12

Prof. seq len
1024 112/224 16/32 784
2048 375/750 64/1024 1568
4096 1500 2048/4096 3136

* ℎ = hidden, Prof. = Profiled

5 Experimental Setup
5.1 Large Language Model
The evaluated LLMs are summarized in Table 1, with LLaMA2-
70B supporting GQA using a group size of 8. We imple-
ment all models using the HuggingFace Transformers Pack-
age [69], profiling and computing loss or perplexity for each
model over 100 inferences. During profiling, we extract the
runtime input nonlinear tensors across all tokens and record
the value and exponent distributions, which is documented
in Figure 4. To obtain the perplexity and loss values shown
in Figure 6, we sweep various configurations for each non-
linear implementation, and show windows containing the
best performing configuration. For both figures, we show
the smallest and largest model of each model family, with
the only exception of Llama 2 13B replacing Llama 2 70B due
to memory and runtime limitations.

Table 2. Comparison of Mugi and baselines: SA refers to
systolic array, SD to SIMD array, Tensor to Tensor Core,
with off-chip bandwidth at 256 GB/s. Input (i), weight (w),
and output (o) refer to respective components, with ranges
(e.g., a-b) covering all powers of 2 between a and b. Input
word config applies to the query word, and weight word to
key and value words with kvcache quantization. -S denotes
scaled-up configurations. All designs use 4x4 and 8x8 NoC
layouts except Tensor and -S configurations, which use a 2x1
and 2x2 and no NoC, respectively.

Configuration Mugi Carat SA SD SA-S SD-S Tensor

i/w/o SRAM 64KB 1MB
Array height (H) 32 - 256 4 - 16 32 - 64 16
Array width (W) 8 H 8
Array Depth (D) N/A 16

Input word 16
Weight word 4
NoC shape 4x4, 8x8 N/A 2x1, 2x2

5.2 Hardware
5.2.1 Mugi. As shown in Table 2, we set the oSRAMwidth
to enable wFIFO loading of nonlinear operations in 8 cy-
cles, ensuring sufficient bandwidth. The wSRAM width is
similarly configured to allow loading in 8 cycles for GEMM
operations. Mugi’s vector array is configured to scale ar-
ray outputs after exiting the oFIFO, hiding latency.Mugi is
optimized for output stationary outer-product computation.

5.2.2 Baseline. We build baselines with components for
both nonlinear operations and GEMM.
Nonlinear approximation hardware uses alternative vec-

tor arrays with added components to implement the Taylor
series and PWL approximation methods [42, 67]. The Taylor
series is implemented with Horner’s method up to 9 degrees,
and requires additional registers to store coefficients. PWL
implementation adopts 22 segments, requiring additional
registers and comparators to store and select proper seg-
ments. Both methods are configured to achieve their best
perplexity as shown in Figure 6. We also consider a vector ar-
ray of MAC units to precisely compute nonlinear operations,
which require 44 cycles [45, 68].

For GEMM, we compareMugi with Carat [46], systolic ar-
rays, SIMD arrays, FIGNA [30], and tensor cores from Nvidia
Hopper GPUs [43], as well as a Mugi-L design. Given Carat
only supports FP8 GEMM with inputs mapped across rows,
we modify its accumulators at the top to BF16 and map in-
puts across columns, while using its FP8 data path for INT4
weights. The systolic and SIMD arrays are similar, with the
systolic array needing additional control hardware and a
column of output accumulators, compared to SIMD’s adder
trees. Like Mugi, Carat implements output stationary, while
the systolic and SIMD arrays use weight stationary config-
urations. The FIGNA configurations extend both systolic

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

T

PE

M

S

TC
=

M-proc
M

S

R E-proc
ClampE

Max/Min

TC PE

TC PE

TC PE

CNT iFIFO

PP
M-sel

NaN
INF
ZeroO

ff-
ch

ip
 m

em
or

y

w
SR

A
M

wFIFO

wFIFO

wFIFO

CNT iAcc iAcc iAcc

TC PE PE PE

iFIFO iFIFO iFIFOiSRAM

TC PE PE PE

TC PE PE PE

oSRAM

SW

E-proc

M-proc

oAcc

oAcc

oAcc

oFIFO

oFIFO

oFIFO

PP

PP

PP

Vec

TC PE PE PE

SC

(a)

(b)

(c)

(d)

(e)

(f) (g)

(h)

1

2

3

4

Figure 9. Overview of Mugi architecture. 1 – 4 (yellow, red, green, and blue) correspond to 1 – 4 phases of VLP approximation
in Figure 3. Purple is for mapping softmax, and gray marks the additional hardware for GEMM.

TCm0
TCm1
TCm2
TCm3 …

M0E0 M0E1 … M0E7
M1E0 M1E1 … M1E7

M7E0 M7E1 … M7E7…a S=0/1

PP
PP
PP
PP

M S, E

s0e0
s1e1
s2e2
s3e3

…

0

0
1
0
4

M
S=1

PP
PP
PP
PP

0, 0 …

TC
TC
TC
TC…

1
2
2
2

E
1

0
1
0
4

M
S=1

PP
PP
PP
PP

1, 0 0, 1 …

TC
TC
TC
TC…

1
2
2
2

E
2

0
1
0
4

M
S=1

PP
PP
PP
PP

2, 0 1, 1 …

TC
TC
TC
TC…

1
2
2
2

E

3

0
1
0
4

M
S=1

PP
PP
PP
PP

3, 0 2, 1 …

TC
TC
TC
TC…

1
2
2
2

E
4

0
1
0
4

M
S=1

PP
PP
PP
PP

4, 0 3, 1 …

TC
TC
TC
TC…

1
2
2
2

E
5

0
1
0
4

M
S=1

PP
PP
PP
PP

5, 0 4, 1 …

TC
TC
TC
TC…

1
2
2
2

E

6

0
1
0
4

M
S=1

PP
PP
PP
PP

6, 0 5, 1 0, 6…

TC
TC
TC
TC…

1
2
2
2

E

LUT

7

0
1
0
4

M
S=1

PP
PP
PP
PP

7, 0 6, 1 1, 6 0, 7…

TC
TC
TC
TC…

1
2
2
2

E
8

1
0
0
2

M
S=1

PP
PP
PP
PP

0, 0 7, 1 2, 6 1, 7…

TC
TC
TC
TC…

1
2
2
2

E
9

1
0
0
2

M
S=1

PP
PP
PP
PP

1, 0 0, 1 3, 6 2, 7…

TC
TC
TC
TC…

1
2
2
2

E

Figure 10. Mapping element-wise nonlinear operations to Mugi. a abstracts the VLP array for nonlinear operations. M, S and
E are for mantissa, sign and exponent. 0 – 9 are examples for exp, and the numbers denotes the clock cycles.

and SIMD arrays with the FIGNA PE, which is customized
for FP-INT multiplication. Additionally, scale-up versions
of both systolic and SIMD arrays with MAC and FIGNA
configurations are evaluated. The tensor core has GEMM
shaped as 8x16x16, and is a fully pipelined design to perform
8x16x16 MAC operations per cycle. We only compare ten-
sor core in NoC settings. TheMugi-L uses a dedicated LUT
to approximate nonlinear operations, rather than temporal
coding based approximation. We ensure 8 inputs share one
LUT to match the throughput of Mugi. Similar toMugi, all
design’s wSRAM and oSRAM widths are selected to load the
array without introducing additional latency.

5.2.3 Network on Chip and Off-Chip Memory. The
NoC incorporates three channels for input, weight, and out-
put. An output-stationary approach is employed across all im-
plementations. Each design operates with a NoC frequency
of 400 MHz and a HBM bandwidth of 256 GB/s from off-chip

memory. Both the NoC and off-chip memory are configured
such that they always supply the minimum bandwidth re-
quired to not bottleneck computation.

5.3 Carbon Modeling
To model bothMugi and baselines operational and embod-
ied carbon, we follow a consistent approach by previous
works [18, 48, 70]. Operational carbon is computed as the
product of E and CI, while embodied carbon is the product
of Area and CPA, both outlined in Section 2.4. For CI, we use
world carbon intensity outlined in ACT [23]. We compute
CPA with 𝐸/𝑚𝑚2 detailed in Dark Silicon [7], and convert it
to CPA with the previously stated CI.

5.4 Simulation
We developed an in-house architecture simulator based on
a publicly available artifact for Carat [46]. We extend the

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

16x
32x
48x Norm Throughput

250x
500x
750x Norm Energy Efficiency

128 256 512 1024 2048 4096

6x
12x
18x Norm Power Efficiency

 Mugi
SM (128)
SiLU (128)
SM (256)
SiLU (256)

 Carat
SM (128)
SiLU (128)
SM (256)
SiLU (256)

 VA-FP
SM (16)
SiLU (16)
SM T (16)
SiLU T (16)

 VA-AP
SM Taylor (16)
SM PWL (16)
SiLU PWL (16)

Figure 11. Iso-area comparison betweenMugi and baselines
for nonlinear operations, across sequence lengths (128–4096)
with a batch size of 8, geometric meaned across all Llama 2
models (7B, 13B, 70B). SM, and VA-FP, and VA-AP abbreviate
softmax, precise vector array, and approximate vector arrays.
Titles in the legend indicate the array type of each column.
All results are normalized to VA (16) with array heights
indicated in “()”.

artifact and build an event-based simulator that can hier-
archically solve the mapping of nonlinear operations and
GEMM on our customizedMugi architecture and report area,
leakage power, dynamic energy, cycle count, and runtime.
The basic hardware modules are implemented in RTL and
synthesized under 400MHzwith 45nm technology to retrieve
metric values. The memory access power are obtained from
CACTI7 [5].

We also place and route the full RTL of a single node 8x8
Mugi at 400MHz, and obtain area 0.056𝑚𝑚2 and frequency
of 408.5MHz with critical path on VLP broadcast. We further
increase the synthesis frequency of Mugi, and reach 975MHz
without timing violations. We stick to 400MHz to isolate of
the impact of the implementation during the evaluation.

6 Evaluation
6.1 Nonlinear Approximation
6.1.1 Accuracy. As shown in Figure 6,Mugi softmax, SiLU,
and GELU implementations achieve highly accurate results,
outperforming other methods on most models. Even in cases
whereMugi is not the most accurate, Llama 2, it remains com-
parable to prior implementations. Conversely, when value
distributions are concentrated, Mugi yields substantial im-
provements in performance, as evident by the perplexity
gains observed in Whisper Tiny and highlighted in Figure 8.
In contrast, prior approximation methods [27, 42, 67] do
not consider the value distribution of workloads prior to
approximation, introducing additional error.

1x

2x

Th
ro

ug
hp

ut Projection/FFN

Mugi (128)
Mugi (256)

Carat (128)
Carat (256)

SA (16)
SA-F (16)

SD (16)
SD-F (16)

5x
10x

Attention

1x
2x
3x

En
er

gy
 E

ff

10x

20x

7B 13B 70B

1x

2x

Po
we

r E
ff

7B 13B 70B GQA

2x

4x

Figure 12. Iso-area comparison for projection (proj), atten-
tion (attn), and feed-forward network (ffn) GEMMoperations
in Llama 2 (7B, 13B, 70B, and 70B with GQA). All results are
normalized to that of 16×16 systolic array (SA). -F denotes
FIGNA. Batch size is set to 8, and sequence length is set to
4096, with array heights indicated in parenthesis ().

6.1.2 Throughput and Efficiency. Figure 11 compares
the throughput and efficiency. Since all designs map the head
dimension across rows, sequence length does not impact
the normalized performance gains. Mugi achieves a shared
normalized throughput of 45×, and energy and power ef-
ficiency improvements of 481.07× and 10.69× for softmax,
and 667.85× and 14.84× for SiLU compared to precise vector
arrays.Mugi outperforms PWL approximation in softmax by
5× (throughput), 8.53× (energy efficiency), and 1.71× (power
efficiency), and in SiLU by 5×, 10.36×, and 2.37×, respec-
tively. Against Taylor series softmax, Mugi achieves 10.02×,
32.93×, and 3.28× improvements in the same metrics.

Mugi contributes these gains in performance to its ability
to scale to larger array sizes, sharing the compute array
with GEMM. However, other designs require standalone
vector arrays for nonlinear operations, where the scale is
bounded by the SRAM bandwidth. Additionally,Mugi does
not have to compute costly exp [68], thus multiplier free.
These improvements allowMugi to increase throughput and
efficiency compared to vector arrays for both precise and
approximation configurations.
Takeaway. Mugi enables accurate nonlinear approximation
by applying input approximation and value-centric approach
to VLP, greatly enhancing both throughput and efficiency.

6.2 GEMM
We show the GEMM execution results in Figure 12. The
GEMM operations include the projection, attention, and FFN
layers from the studied LLM models. We observe that in
terms of throughput and efficiency,Mugi consistently out-
performs both systolic and SIMD arrays. Mugi is optimized

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

Table 3. Comparison of Mugi and baselines throughput,
area, energy and power efficiency on LLaMa 2 70B (with
GQA). Batch size is set to 8, and sequence length is set to
4096. Hardware details are outlined in Table 2.

Design Throughput OC Area Energy Efficiency Power Efficiency
(Tokens/s) (𝑚𝑚2) (Tokens/s/𝜇J) (Tokens/s/W)

SN

Mugi (128) 0.71 2.16 68.64 3.18
Mugi (256) 1.39 3.10 142.82 3.37
Carat (128) 0.70 2.42 53.00 2.47
Carat (256) 1.38 3.84 95.78 2.27
SA (16) 0.67 2.58 45.97 2.24
SA-F (16) 0.67 2.81 44.34 2.16
SD (16) 0.67 2.54 47.83 2.34
SD-F (16) 0.67 2.77 46.06 2.25

SN-S

SA (64) 2.70 25.84 138.59 1.68
SA-F (64) 2.70 29.56 131.66 1.60
SD (64) 2.70 25.14 143.18 1.74
SD-F (64) 2.70 28.86 135.79 1.65
Tensor 10.06 38.75 488.31 1.59

NoC

4 x 4Mugi (256) 22.19 50.12 2314.23 3.42
4 x 4 Carat (256) 22.08 61.92 1551.09 2.30
4 x 4 SA (16) 10.74 41.77 770.31 2.35
4 x 4 SA-F (16) 10.74 45.48 741.68 2.26
4 x 4 SD (16) 10.74 41.18 803.82 2.45
4 x 4 SD-F (16) 10.74 44.89 772.70 2.36
2 x 1 Tensor (8) 20.12 77.56 989.02 1.61

for 8 columns, which aligns with and benefits from a batch
size and GQA group size of 8, allowing it to leverage GQA for
better throughput. This capability ensures thatMugi main-
tains excellent utilization even as the array size scales. On
the contrary, systolic and SIMD arrays face under-utilization
with array sizes larger than 8x8. Additionally, VLP elimi-
nates multiplication inMugi, increasing efficiency compared
to baselines. Compared with Carat [46], Mugi shows better
efficiency as Carat needs additional hardware to execute
nonlinear operations.
TakeawayMugi achieves good throughput and efficiency
gains through timely LLM optimizations in emerging asym-
metric data formats, small-batch GEMM, and GQA.

6.3 LLM workload
6.3.1 Single Node. Single-node evaluations show that
Mugi exceeds baseline implementations in both throughput
and efficiency, while also reducing overhead and area costs.
An end-to-end comparison is provided in Table 3. Compared
to a baseline systolic array 16, the Mugi 256 architecture
achieves an increase of 2.07×, 3.11×, and 1.50× in throughput,
energy efficiency, and power efficiency respectively. These
improvements stem from Mugi ’s effective reuse of the com-
pute array for both nonlinear operations and GEMM, and
efficient handling of asymmetric, small-batch GEMM using
WOQ, KVQ, and GQA.

Figure 13 highlights these advantages, which are further
amplified by the elimination of specialized vector arrays and
costly MAC units, resulting in a more compact compute ar-
ray and lower power consumption. Mugi additionally scales
more efficiently to larger array sizes, growing linearly. On
the contrary, the area of systolic and SIMD arrays scales up

0% 50% 100%

0.5 mm²
117.4 mW
35.1 mm²
2.6 W
0.9 mm²
195.8 mW
50.1 mm²
4.1 W
0.8 mm²
122.1 mW
39.5 mm²
2.6 W
1.5 mm²
205.3 mW
58.9 mm²
4.3 W
0.9 mm²
168.3 mW
39.2 mm²
3.2 W
2.0 mm²
325.0 mW
61.9 mm²
6.0 W
0.3 mm²
108.0 mW
28.5 mm²
2.0 W
1.0 mm²
221.6 mW
45.5 mm²
3.4 W
0.2 mm²
98.9 mW
28.4 mm²
1.9 W
1.0 mm²
209.7 mW
44.9 mm²
3.3 W

Mugi

Mugi-L

Carat

S-F

SD-F

Node:
Acc

Fifo
PE

Nonlinear
Vector

TC
VR

128

256

128

256

128

256

8

16

8

16

NoC (4x4): Array SRAM NoC

Figure 13. Array and NoC level area and power breakdown.
Total area and power is shown in each bar. Cool colored bars
represent array level while warm colored bars represent NoC
level. Acc refers to output accumulators, and nonlinear refers
to nonlinear hardware. For the power breakdown, batch size
is set to 8 and the sequence length is set to 4096.

quadratically as the array scales in both row and column
dimensions. Though also based on VLP, Carat area scales
up super-linearly, due to the excessive cost of FIFO. Despite
the large area, the temporal coding in VLP still minimizes
the switching activities and ensures a low power-to-area
ratio. Comparing toMugi,Mugi-L with LUT for nonlinear
operations and VLP for GEMM, spends way more hardware
on on-chip LUT, implemented using FIFOs to ensure pro-
grammability.

We further show an extended throughput and energy com-
parison of different designs when sweeping the batch size,
as shown in Figure 14, offering higher throughput and lower
energy per token. The best throughput of Mugi is attainable
at a smaller batch size of 8 than other baselines, as Mugi
maps the batch across columns and peaks the utilization at
a batch size of 8.

We additionally considered off-chip memory accesses, and
we see that Mugi handles DRAM traffic similarly to other

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

10x
20x
30x

Norm Throughput

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

5x
15x
25x

Norm Energy/Token

128 256 512 1024 2048 4096

Mugi (64)
Mugi (256)

Carat (64)
Carat (256)

SA (8)
SA (16)

SA-F (8)
SA-F (16)

SD (8)
SD (16)

SD-F (8)
SD-F (16)

Figure 14. ISO-throughput LLMs study, geometric mean over all Llama models. The x-axis represents batch size at the bottom
and each plot represents sequence lengths (128-4096) at the top. The y-axis represents the improvements of throughput and
energy per token. All designs are normalized to an 8×8 systolic array with batch a size of 1. -F denotes FIGNA, and array
heights are indicated in “()”. SA and SD base and -F array’s throughput closely overlap, as doMugi and Carat.

dataflow architectures, almost identical operational inten-
sity, but offers higher compute utilization, therefore more
compute bounded.
Figure 16 shows a latency breakdown of different LLMs.

It is observed thatMugi have slightly better latency for at-
tention GEMMs than other designs, but almost halves the la-
tency for projection and FFN GEMMs. Regarding the nonlin-
ear operations,Mugi shows almost invisible latency, exhibit-
ing tremendous improvements over other designs. Though
not obvious, Carat triples the nonlinear latency of Mugi, due
to relying on non-VLP approximations.

6.3.2 Carbon Emission. When comparing Mugi’s car-
bon impact to baselines, we see that Mugi improves in both
operational and embodied emissions by 1.45× and 1.48×
respectively. While Figure 15 shows operational carbon as
the major contributor to emissions, this follows previous
trends consitent with 45nm technologies. ThroughMugi’s
efficient, shared compute array, Mugi is able to simultane-
ously decrease both operational and embodied carbon while
delivering an increase to throughput for LLM workloads.

6.3.3 Multi Node. Mugi scales efficiently to multi-node
designs using a NoC architecture. We compareMugi ’s multi-
node implementations against baseline designs with the
same NoC configuration and scaled-out versions of single
node baseline architectures. As with single node setups,
Mugi ’s multi node configurations show comparable gains
in throughput, energy efficiency, and power efficiency when
comparingMugi 4x4 256 and systolic array 4x4 16. Figure 17
details these improvements, emphasizing the benefits of
multi-node architectures. Moreover, NoC-based implemen-
tations clearly outperform scaled-up systolic arrays, due to
severe under-utilization at a small batch size, as shown in
Table 3. Figure 13 shows the breakdown of NoC level area,

M C S D T P
0.0
0.5
1.0
1.5

7B

M C S D T P

13B

M C S D T P

70B

M C S D T P

70B GQA
256 16 256 16 256 16 256 16

Projection Attention FFN Nonlinear Embodied

Figure 15. Normalized onchip operational and embodied
carbon across model sizes (Llama 2-7B, 13B, 70B, 70B GQA)
of Mugi and baseline configurations. Batch size is set to 8,
and sequence length is set to 4096. Top x-axis represents
array height, while y axis is normalized latency. M, C, S, D,
T, P represents Mugi, Carat, Systolic, SIMD, Taylor Series,
and Piecewise linear approximate respectively.

M C S T P
0

1

2

7B

M C S T P

13B

M C S T P

70B

M C S T P

70B GQA
256 16 256 16 256 16 256 16

Projection Attention FFN Nonlinear

Figure 16.Normalized end-to-end latency breakdown across
model sizes. All notations are identical to those in Figure 15,
except that S here is for Systolic/SIMD.

and the array is occupying varying ratios of the on-chip
resource, given an identical on-chip SRAM size.

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

6x
12x
18x Norm Throughput

10x
20x
30x Norm Energy Efficiency

64/8/S 128/16/2 256/SU/4

1x
2x Norm Power Efficiency

Mugi Carat SA SA-F SD SD-F Tensor

Figure 17. Normalized NoC-level throughput, energy effi-
ciency, and power efficiency forMugi and baseline 4x4 and
8x8 NoC architectures. Data represents the geometric mean
across model sizes (Llama 2–7B, 13B, 70B) with a batch size
of 8 and sequence length set to 4096. The x-axis represents
array height for each group, in order of VLP, SA/SD, and
tensor core. Tensor core configurations represent -S (single
node), 2 (2x1 NoC), 4 (2x2 NoC). All models are normalized
to an 8×8 systolic array (NoC dim: 4x4).

Takeaway By enabling VLP for both nonlinear operations
and GEMM,Mugi effectively accelerates all aspects of LLM
workloads, which also scales to multi nodes.

7 Discussion
7.1 Limitations
While we showcase the benefits of VLP, there are a few
workloads or techniques not addressed in this paper.
Additional Operations. While Mugi unlocks nonlinear ap-
proximation, there are still some nonlinear LLM operations
not supported, such as layer normalization and rotary posi-
tional embeddings (RoPE). Layer normalization are vector
multiplication, and can be supported inMugi’s vector unit.
For RoPE, Mugi can either approximate the required sine
and cosine functions, though the utilization might be low
due to its sparse nature, or offload them to external hardware
as in existing GEMM accelerators.
MoE and Multi-Modal Models. Mixture-of-Experts (MoE)
extend standard attention-based LLMs with selective FFN ex-
perts, selected by a softmax-based gating network [11, 15, 37].
Multi-modal models support multiple modalities beyond just
text (i.e., language, vision, video, etc), by either tokenizing
non-language inputs [14], or combining multiple modality-
specific layers [4, 62]. There additionally exist models that
leverage MoE architecture on multiple modalities [40]. All
these additional operations have been supported in Mugi,
and different modality has been studied in this work to prove
the efficacy of VLP. We conjectureMugi should generalize

to both MoE and multi-modal variants, though we leave full
validation to future work.
Online Approximation. Currently, Mugi pre-computes
the results offline for accurate nonlinear approximation via
LUT. However, the value distribution could exhibit a slight
drift at runtime. Such drifts in both KV cache and FFN have
been well tackled via quantization, using as few as 4 bits. As
for softmax, since all softmax inputs are subtracted by the
maximum for numerical stability, the drift minimally impacts
accuracy. Moreover, Mugi ’s sliding window mechanism
helps adapt to the current workload and further reduces the
impact of drift. That said, we argue optimal accuracy would
benefit from an online mechanism to adjust LUT values at
runtime, and we leave this to future work.

7.2 Related Works

Nonlinear Approximation. Prior works have explored
approximating nonlinear operations. Some approaches use
piece-wise linear (PWL) approximations, partitioning the
function into segments and selecting coefficients based on in-
put range, while others approximate the entire function with
a single simplified equation [27, 67, 76, 79]. Other works use
Taylor-series expansions, which can provide high accuracy
but degrade as values drift from the expansion point [42, 66].
While all approximation techniques, includingMugi, intro-
duce some levels of approximation error, others underper-
form Mugi in most models while increasing area and effi-
ciency costs, as detailed in Figure 6 and Table 3.
GEMMAcceleration.Anumber of priorworks target GEMM
acceleration. Carat first introduced VLP, enabling low-precision,
large-batch value reuse for CNNs [46]. While large batch
sizes compliment CNNworkloads, LLMs operatewith smaller
batch sizes and larger matrices, making Carat unsuited for
such workloads. Other accelerators exploit unary comput-
ing [73–75, 78] to reduce buffer overhead using ternary RIM
arrays and unary half-adders [21], improving accumulation
efficiency. However, each PE still requires multipliers and
accumulators, whereasMugi eliminates costly PEMAC units
altogether via VLP. Additional works identify the ability to
exploit data reuse to reduce data movement. Multi-chip mod-
ule designs share inputs across weight-stationary chiplets to
exploit cross-chiplet reuse [58]. Matrix-scaling approaches
reduce large matrices into sub-matrices and scaling vectors,
reducing memory transfers sharing sub-matrix computation
during rescaling [53]. Lastly, another work identifies that
quantization reduces the number of possible inputs, enabling
computation to be shared between layers where outputs do
not change [57]. LikeMugi, these works similarly identify
data reuse techniques but largely overlook value reuse, miss-
ing further opportunities for optimization.
KV Cache Compatibility. Some works employ detailed
hardware–software co-design to improve LLM performance.

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

These works aim to reduce computation through top-k spec-
ulative prediction, removing computation predicted to be
negligible to the attention output and reducing KV cache
accesses [24, 52, 65, 66]. In contrast, other accelerators focus
purely on GEMM computation and do not address attention
or KV-cache related bottlenecks [21, 46, 53, 57, 58]. Mugi
occupies a middle ground by incorporating lightweight KV-
cache optimizations natively in its architecture, avoiding
workload-specific optimizations via co-design. This allows
Mugi to generalize across models while still capturing key
reuse opportunities in modern LLM workloads.

8 Conclusion
In this paper, we orchestrate value-level parallelism (VLP)
for efficient transformer-based LLMs. We formulate VLP
for nonlinear approximation in a value-centric approach
where important values are assigned with greater accuracy.
We design aMugi architecture for our VLP approximation.
Additionally, we optimize Mugi to accelerate asymmetric,
small-batch GEMM, which leverages the trending LLM opti-
mizations. To this end,Mugi effectively supports full LLM
workloads via VLP. Our experimental results demonstrate
significant performance and efficiency gains inMugi, high-
lighting the potential of VLP for AI workloads.

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

A Artifact Appendix
A.1 Abstract
The artifact evaluation is separated into two scopes, work-
load evaluation and architecture evaluation. The workload
evaluation contains nearly all figureswithin section 3, namely
Figure 4, Figure 6, and Figure 8. The architecture evaluation
includes all figures within section 6. Both artifacts can be run
on an x86_64 machine with python and conda installed. The
workload evaluation requires access to a GPU cluster. We
have tested the architecture evaluation on ubuntu 24.04, and
the workload evaluation on an NSF GPU cluster running Red
Hat 9.4. To run each artifact, download the artifacts from
the zenodo links detailed in Section A.3 and follow steps
outlined in Section A.4. To see the results generated from
running the artifact, see Section A.6 for detail.

A.2 Artifact check-list (meta-information)
• Workload evaluation:
– Model: AI profiling
– Data set: Models outlined in Table 1. Note that
Llama 70B results are excluded in the provided arti-
fact, due to the excessive profiling time.

– Run-time environment: Conda
– Hardware: NSF GPU cluster
– Metrics: Perplexity, value distribution, theoretical
error

– Output: Figure 6, Figure 4, Figure 8,
– Experiments: Approximate perplexity comparison,
model value distribution, approximation theoretical
error

– Disk space required (approximate): 70GB
– Time needed to complete experiments (approx-
imate): 12-24 hours

– Publicly available: Yes
– Code licenses (if publicly available):MIT License
– Workflow framework used: Pytorch

• Architecture evaluation:
– Model: Cycle-level performance model, event-based
cost model

– Data set: Llama configurations outlined in Table 1
– Run-time environment: Conda
– Hardware: x86_64 machine
– Metrics:Throughput, latency, energy efficiency, power
efficiency, area, carbon equivalent emissions.

– Output: Figure 11, Figure 12, Table 3, Figure 13,
Figure 14, Figure 15, Figure 16, Figure 17.

– Experiments: Iso-area nonlinear comparison, iso-
area GEMMcomparison, comprehensive design com-
parison, array and noc-level area and power break-
down, batch size comparison, operational and em-
bodied carbon comparison, end-to-end latency com-
parison, iso-area noc comparison.

– Disk space required (approximate): 8GB

– Time needed to complete experiments (approx-
imate): 0.5 - 1 hours

– Publicly available: Yes
– Code licenses (if publicly available):MIT License
– Workflow framework used: In-house simulation
framework

A.3 Description
A.3.1 How to access. Both artifacts can be downloaded at
https://zenodo.org/records/18063514. Follow the instructions
detailed in the zenodo or Section A.4 and A.5 to evaluate
each artifact.

A.3.2 Hardware dependencies. For the workload evalu-
ation, a GPU capable of loading all models at half precision
is required.

A.3.3 Software dependencies. Conda is required to build
the environment.1

A.3.4 Datasets. Both evaluations use the models outlined
in Table 1, with the architecture evaluation only including
Llama models, and the workload evaluation ignoring Llama
2 70b. Access to the ML models is provided in the artifact
during the artifact evaluation, but will be deprecated after
evaluation, and access to the models will have to be ob-
tained.2

A.3.5 Models. The models used in our simulation frame-
work include a cycle-level performance model and an event-
based cost model, as well as profiling and end-to-end per-
plexity results.

A.4 Installation
One may follow the steps below to run the artifact, also
available at the zenodo link in Section A.3.1. For the artifact
evaluation, we will provide access to the NSF GPU cluster.
Both evaluations detail the steps assuming a Linux envi-
ronment, and require the command-line tool unzip to be
installed prior to evaluation. If you are evaluating either ar-
tifact on a local machine, follow the commands below to
install unzip. Otherwise, ensure that unzip or and equivalent
command-line tool is available.

sudo apt update
sudo apt install unzip

Workload evaluation.
1. Download the zip file from the zenodo link.

mugi_profiling-asplos_2026_ae.zip
https://zenodo.org/records/18063514

2. Unzip the artifact and cd into the new directory.
unzip mugi_profiling-asplos_2026_ae.zip
cd mugi_profiling-asplos_2026_ae

1Available at https://www.anaconda.com/download.
2Available at https://huggingface.co/meta-llama.

https://zenodo.org/records/18063514
https://zenodo.org/records/18063514

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

3. Create a conda environment with the included envi-
ronment.yaml and activate the environment.
conda env create -f environment.yaml
conda activate mugi_profiling

4. Run the included script to launch all slurm scripts.
bash mugi_profiling.sh
If slurm access is not available (NSF access fails), an ad-
ditional script is provided, but tuning may be required.
bash mugi_profiling_local.sh

5. Finally, retrieve the figures in the figures/output direc-
tory.

Architecture evaluation.

1. Download the zip file from the zenodo link.
archx-asplos_2026_ae.zip
https://zenodo.org/records/18063514

2. Unzip the artifact and cd into the new directory.
unzip archx-asplos_2026_ae.zip
cd archx-asplos_2026_ae

3. Create a conda environment with the included envi-
ronment.yaml and activate the environment.
conda env create -f environment.yaml
conda activate archx

4. Run the included script to generate and simulate the
architecture descriptions.
bash run_mugi.sh

5. Finally, retrieve the figures in the zoo/llm/results/figs/
and zoo/llm/results/tables/ directories.

A.5 Experiment workflow

Workload evaluation. We use slurm scripts to automate
profiling and end-to-end perplexity results. To produce each
figure, the scripts load the model onto an allocated node
and run the target dataset. Profiling is done on the base half-
precision models, while perplexity is retrieved for base mod-
els at both half precision and for nonlinear approximation.
After all models run, the scripts process both the profiling
and perplexity results and report them within each figure.
Architecture evaluation.We use scripts to automatically
run the workflow for the result production. To produce a fig-
ure, the evaluation scripts first generate all the hardware con-
figurations based on the provided architecture descriptions.
Then, the simulation is run on each architecture description
with a target workload (e.g., llama). More specifically, both
the performance model and cost model are run. Note that the
automated workflow launches these simulations in parallel.
Finally, the scripts parse the generated result and aggregate
results across runs from all the configurations to generate
figures.

A.6 Evaluation and expected results
After running the steps in Section A.4, the generated figures
can be found locally in figures/output directory for work-
load evaluation and zoo/llm/results/figs and
zoo/llm/results/tables for the architecture evaluation.
Each figure is labeled as figX-Y.pdf that corresponds to
what is included in Section 3 and Section 6. The expected
profiling distribution in the workload evaluation may exhibit
slight deviations from the values reported in the paper due
to device-specific computational variation.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://zenodo.org/records/18063514
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

References
[1] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun

Kwatra, Bhargav S Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. USENIX Symposium on Operating Systems Design
and Implementation (2024).

[2] Ankur Agrawal, Silvia M. Mueller, Bruce M. Fleischer, Xiao Sun,
Naigang Wang, Jungwook Choi, and Kailash Gopalakrishnan. 2019.
DLFloat: A 16-b Floating Point Format Designed for Deep Learning
Training and Inference. In 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH).

[3] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebron, and Sumit Sanghai. 2023. GQA: Training General-
ized Multi-Query Transformer Models from Multi-Head Checkpoints.
Empirical Methods in Natural Language Processing.

[4] Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen, Xionghui Chen, Ze-
sen Cheng, Lianghao Deng, Wei Ding, Chang Gao, Chunjiang Ge, Wen-
bin Ge, Zhifang Guo, Qidong Huang, Jie Huang, Fei Huang, Binyuan
Hui, Shutong Jiang, Zhaohai Li, Mingsheng Li, Mei Li, Kaixin Li,
Zicheng Lin, Junyang Lin, Xuejing Liu, Jiawei Liu, Chenglong Liu,
Yang Liu, Dayiheng Liu, Shixuan Liu, Dunjie Lu, Ruilin Luo, Chenxu
Lv, Rui Men, Lingchen Meng, Xuancheng Ren, Xingzhang Ren, Sibo
Song, Yuchong Sun, Jun Tang, Jianhong Tu, JianqiangWan, PengWang,
Pengfei Wang, Qiuyue Wang, Yuxuan Wang, Tianbao Xie, Yiheng Xu,
Haiyang Xu, Jin Xu, Zhibo Yang, Mingkun Yang, Jianxin Yang, An
Yang, Bowen Yu, Fei Zhang, Hang Zhang, Xi Zhang, Bo Zheng, Humen
Zhong, Jingren Zhou, Fan Zhou, Jing Zhou, Yuanzhi Zhu, and Ke Zhu.
2025. Qwen3-VL Technical Report. arXiv (2025).

[5] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar,
Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7: New Tools for In-
terconnect Exploration in Innovative Off-Chip Memories. Transactions
on Architecture and Code Optimization (2017).

[6] Jeff Barr. 2019. Amazon EC2 Update – Inf1 Instances with AWS
Inferentia Chips for High Performance Cost-Effective Inferenc-
ing. https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-
instances-with-aws-inferentia-chips-for-high-performance-cost-
effective-inferencing/

[7] Erik Brunvand, Donald Kline, and Alex K. Jones. 2018. Dark Silicon
Considered Harmful: A Case for Truly Green Computing. In nterna-
tional Green and Sustainable Computing Conference (IGSC).

[8] Yuji Chai, John Gkountouras, Glenn G. Ko, David Brooks, and Gu-Yeon
Wei. 2023. INT2.1: Towards Fine-Tunable Quantized Large Language
Models with Error Correction through Low-Rank Adaptation. arXiv
(2023).

[9] Jaewan Choi, Hailong Li, Byeongho Kim, Seunghwan Hwang, and
Jung Ho Ahn. 2022. Accelerating Transformer Networks through
Recomposing Softmax Layers. In International Symposium onWorkload
Characterization.

[10] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. 2021. Lazy Batch-
ing: An SLA-aware Batching System for Cloud Machine Learning
Inference. In International Symposium on High-Performance Computer
Architecture.

[11] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao,
Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda
Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and
Wenfeng Liang. 2024. DeepSeekMoE: Towards Ultimate Expert Spe-
cialization in Mixture-of-Experts Language Models. arXiv (2024).

[12] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao
Wu, et al. 2025. Deepseek-V3 Technical Report. arXiv (2025).

[13] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
2022. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.
In Advances in Neural Information Processing Systems.

[14] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan

Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Haus-
man, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete
Florence. 2023. PaLM-E: an embodied multimodal language model. In
Proceedings of the 40th International Conference on Machine Learning.
JMLR.org.

[15] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lep-
ikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu,
Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma, Zongwei
Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathleen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun
Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022.
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts.
In Proceedings of the 39th International Conference on Machine Learn-
ing.

[16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, et al. 2024. The Llama 3 Herd of Models. arXiv
(2024).

[17] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018. Sigmoid-Weighted
Linear Units for Neural Network Function Approximation in Rein-
forcement Learning. Neural Networks (2018).

[18] Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Prateek Sharma,
Fan Chen, and Lei Jiang. 2024. LLMCarbon: Modeling the end-to-end
Carbon Footprint of Large Language Models. arXiv (2024).

[19] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh.
2023. GPTQ: Accurate Post-Training Quantization for Generative
Pre-Trained Transformers. arXiv (2023).

[20] Kunihiko Fukushima. 1969. Visual Feature Extraction by A Multilay-
ered Network of Analog Threshold Elements. IEEE Transactions on
Systems Science and Cybernetics (1969).

[21] Hongrui Guo, Yongwei Zhao, Zhangmai Li, Yifan Hao, Chang Liu,
Xinkai Song, Xiaqing Li, Zidong Du, Rui Zhang, Qi Guo, Tianshi Chen,
and Zhiwei Xu. 2023. Cambricon-U: A Systolic Random Increment
Memory Architecture for Unary Computing. In International Sympo-
sium on Microarchitecture.

[22] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S.
Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing sustain-
able computer systems with an architectural carbon modeling tool. In
International Symposium on Computer Architecture.

[23] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S.
Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing sus-
tainable computer systems with an architectural carbon modeling
tool.

[24] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi,
Sung Jun Jung, and Jae W. Lee. 2021. ELSA: hardware-software co-
design for efficient, lightweight self-attention mechanism in neural
networks. In International Symposium on Computer Architecture.

[25] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian Error Linear Units
(GELUs). arXiv (2016).

[26] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W.
Mahoney, Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024.
KVQuant: Towards 10 Million Context Length LLM Inference with KV
Cache Quantization. arXiv (2024).

[27] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo
Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vi-
jay Vasudevan, Quoc V. Le, and Hartwig Adam. 2019. Searching for
MobileNetV3. International Conference on Computer Vision (2019).

[28] Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang,
Xianglong Liu, Michele Magno, and Xiaojuan Qi. 2024. BiLLM: Pushing
the Limit of Post-Training Quantization for LLMs. arXiv (2024).

[29] International Telecommunication Union (ITU) and World Benchmark-
ing Alliance (WBA). 2025. Tech sector emissions, energy use grow
with rise of AI. https://www.itu.int/en/mediacentre/Pages/PR-2025-
06-05-greening-digital-companies-report.aspx Accessed: 2025-08-12.

https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing/
https://www.itu.int/en/mediacentre/Pages/PR-2025-06-05-greening-digital-companies-report.aspx
https://www.itu.int/en/mediacentre/Pages/PR-2025-06-05-greening-digital-companies-report.aspx

ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Daniel Price, Prabhu Vellaisamy, John P. Shen, and Di Wu

[30] Jaeyong Jang, YulhwaKim, Juheun Lee, and Jae-Joon Kim. 2024. FIGNA:
Integer Unit-Based Accelerator Design for FP-INT GEMM Preserving
Numerical Accuracy. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA).

[31] Yangqing Jia. 2014. Learning Semantic Image Representations at a Large
Scale. Ph. D. Dissertation. EECS Department, University of California,
Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-
2014-93.html

[32] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar
Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj
Jammalamadaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo
Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srini-
vasan, Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep
Dubey. 2019. A Study of BFLOAT16 For Deep Learning Training. arXiv
(2019).

[33] Tushar and Qingru Zhang Kang, Hao, Souvik Kundu, Geonhwa Jeong,
Zaoxing Liu, Tushar Krishna, and Tuo Zhao. 2024. GEAR: An Efficient
KV Cache Compression Recipe for Near-Lossless Generative Inference
of LLM. arXiv (2024).

[34] Rachid Karami, Sheng-Chun Kao, and Hyoukjun Kwon. 2025.
NonGEMM Bench: Understanding the Performance Horizon of the
Latest ML Workloads with NonGEMM Workloads. In International
Symposium on Performance Analysis of Systems and Software.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems, F. Pereira, C.J.
Burges, L. Bottou, and K.Q. Weinberger (Eds.).

[36] Andrey Kuzmin, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn
Peters, and Tijmen Blankevoort. 2022. FP8 Quantization: The Power of
the Exponent. In Advances in Neural Information Processing Systems.

[37] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2020. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. arXiv (2020).

[38] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Guangxuan Xiao, and
Song Han. 2025. AWQ: Activation-aware Weight Quantization for
On-Device LLM Compression and Acceleration. GetMobile: Mobile
Comp. and Comm. (2025).

[39] Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang,
Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei.
2024. The Era of 1-bit LLMs: All Large Language Models are in 1.58
Bits. arXiv (2024).

[40] Meta AI. 2025. Llama 4: Multimodal Intelligence. https://ai.meta.com/
blog/llama-4-multimodal-intelligence/. Accessed: 2025-12-05.

[41] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea,
Pradeep Dubey, Richard Grisenthwaite, Sangwon Ha, Alexander Hei-
necke, Patrick Judd, John Kamalu, Naveen Mellempudi, Stuart Ober-
man, Mohammad Shoeybi, Michael Siu, and Hao Wu. 2022. FP8 For-
mats for Deep Learning. arXiv (2022).

[42] Peter Nilsson, Ateeq Ur Rahman Shaik, Rakesh Gangarajaiah, and title
= Hardware Implementation of the Exponential Function Using Taylor
Series journal = Nordic Circuits and Systems Conference year = 2014
Hertz, Er. [n. d.]. ([n. d.]).

[43] NVIDIA. 2024. NVIDIA H100 Tensor Core GPU Architecture. Re-
trieved 2024-11-14 from https://resources.nvidia.com/en-us-hopper-
architecture/nvidia-h100-tensor-c

[44] NVIDIA. 2024. TensorRT-LLM. Retrieved 2024-11-14 from https:
//github.com/NVIDIA/TensorRT-LLM

[45] Stuart F. Oberman and Michael J. Flynn. 1997. Division Algorithms
and Implementations. IEEEXplore (1997).

[46] Zhewen Pan, Joshua San Miguel, and Di Wu. 2024. Carat: Unlocking
Value-Level Parallelism for Multiplier-Free GEMMs. In International
Conference on Architectural Support for Programming Languages and
Operating Systems.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreass Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. arXiv
(2019).

[48] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
2021. Carbon Emissions and Large Neural Network Training. arXiv
(2021).

[49] Raspberry Pi. 2024. Raspberry Pi 5. Retrieved 2024-11-14 from https:
//www.raspberrypi.com/products/raspberry-pi-5/

[50] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin,
James Bradbury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff
Dean. 2023. Efficiently Scaling Transformer Inference. In Proceedings
of Machine Learning and Systems.

[51] Valentina Popescu, Abhinav Venigalla, Di Wu, and Robert Schreiber.
2021. Representation Range Needs for 16-Bit Neural Network Training.
arXiv (2021).

[52] Yubin Qin, Yang Wang, Dazheng Deng, Zhiren Zhao, Xiaolong Yang,
Leibo Liu, Shaojun Wei, Yang Hu, and Shouyi Yin. 2023. FACT: FFN-
Attention Co-optimized Transformer Architecture with Eager Correla-
tion Prediction. In International Symposium on Computer Architecture.

[53] Yubin Qin, Yang Wang, Zhiren Zhao, Xiaolong Yang, Yang Zhou, Shao-
jun Wei, Yang Hu, and Shouyi Yin. 2025. MECLA: Memory-Compute-
Efficient LLM Accelerator with Scaling Sub-matrix Partition. In Inter-
national Symposium on Computer Architecture.

[54] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. 2023. Robust Speech Recognition via
Large-Scale Weak Supervision . In International Conference on Machine
Learning.

[55] Mariam Rakka, Jinhao Li, Guohao Dai, Ahmed Eltawil, Mohammed E
Fouda, and Fadi Kurdahi. 2025. SoftmAP: Software-Hardware Co-
design for Integer-Only Softmax on Associative Processors. In Design
Automation and Test in Europe.

[56] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2017. Searching
for Activation Functions. arXiv (2017).

[57] Marc Riera, Jose-Maria Arnau, and Antonio Gonzalez. 2018. Compu-
tation Reuse in DNNs by Exploiting Input Similarity. In International
Symposium on Computer Architecture.

[58] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang,
William J. Dally, Joel Emer, C. Thomas Gray, Brucek Khailany, and
Stephen W. Keckler. 2019. Simba: Scaling Deep-Learning Inference
with Multi-Chip-Module-Based Architecture. In International Sympo-
sium on Microarchitecture. 14–27.

[59] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Symposium on Operating Systems Principles.

[60] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. FlexGen: High-Throughput Generative Inference of Large Lan-
guage Models with a Single GPU. In International Conference on Ma-
chine Learning.

[61] Jacob R. Stevens, Rangharajan Venkatesan, Steve Dai, Brucek Khailany,
and Anand Raghunathan. 2021. Softermax: Hardware/Software Co-
Design of an Efficient Softmax for Transformers. In Design Automation
Conference.

[62] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, et al. 2025. Gemini: A Family of Highly Capable
Multimodal Models.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-93.html
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c
https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://www.raspberrypi.com/products/raspberry-pi-5/
https://www.raspberrypi.com/products/raspberry-pi-5/

Mugi : Value Level Parallelism For Efficient LLMs ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA

[63] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-
ton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fer-
nandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswamim, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui
Hou, Hakan Inan,Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin
Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023. LLAMA 2: Open
Foundation and Fine-Tuned Chat Models. arXiv (2023).

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All You Need. InAdvances in Neural Information Processing
Systems.

[65] Huizheng Wang, Zichuan Wang, Zhiheng Yue, Yousheng Long, Tai-
quan Wei, Jianxun Yang, Yang Wang, Chao Li, Shaojun Wei, Yang
Hu, and Shouyi Yin. 2025. MCBP: A Memory-Compute Efficient LLM
Inference Accelerator Leveraging Bit-Slice-enabled Sparsity and Repet-
itiveness. In International Symposium on Microarchitecture.

[66] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. SpAtten: Efficient
Sparse Attention Architecture with Cascade Token and Head Pruning.
International Symposium on High-Performance Computer Architecture
(2021).

[67] Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang,
and Yun Liang. 2018. C-LSTM: Enabling Efficient LSTM using Struc-
tured Compression Techniques on FPGAs. International Symposium
on Field-Programmable Gate Arrays (2018).

[68] Maciej Wielgosz and Ernest Jamro. 2009. Highly Efficient TwinModule
Structure of 64-Bit Exponential Function Implemented on SGI RASC
Platform. ResearchGate (2009).

[69] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, and Jamie Brew. 2020. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Processing. arXiv (2020).

[70] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, New-
sha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James
Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anas-
tasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Ben-
jamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat,
Joe Spisak, Ravi Jain, Mike Rabbat, and Kim Hazelwood. 2022. Sustain-
able AI: Environmental Implications, Challenges and Opportunities.
arXiv (2022).

[71] Di Wu, Tianen Chen, Chienfu Chen, Oghenefego Ahia, Joshua
San Miguel, Mikko Lipasti, and Younghyun Kim. 2019. SECO: A Scal-
able Accuracy Approximate Exponential Function Via Cross-Layer
Optimization. In International Symposium on Low Power Electronics
and Design. doi:10.1109/ISLPED.2019.8824959

[72] Di Wu, Jingjie Li, Setareh Behrooz, Younghyun Kim, and Joshua
San Miguel. 2021. UNO: Virtualizing and Unifying Nonlinear Op-
erations for Emerging Neural Networks. In International Symposium
on Low Power Electronics and Design.

[73] DiWu, Jingjie Li, Zhewen Pan, YounghyunKim, and Joshua SanMiguel.
2022. uBrain: A Unary Brain Computer Interface. In International
Symposium on Computer Architecture.

[74] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and
Joshua San Miguel. 2020. uGEMM: Unary Computing Architecture
for GEMM Applications. In International Symposium on Computer

Architecture.
[75] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and

Joshua San Miguel. 2021. uGEMM: Unary Computing for GEMM
Applications. IEEE Micro (2021).

[76] Di Wu and Joshua San Miguel. 2019. In-Stream Stochastic Division
and Square Root via Correlation. In Design Automation Conference.
doi:10.1145/3316781.3317844

[77] Di Wu and Joshua San Miguel. 2021. When Dataflows Converge:
Reconfigurable and Approximate Computing for Emerging Neural
Networks. In International Conference on Computer Design. doi:10.
1109/ICCD53106.2021.00014

[78] Di Wu and Joshua San Miguel. 2022. uSystolic: Byte-Crawling Unary
Systolic Array. In International Symposium on High-Performance Com-
puter Architecture.

[79] Di Wu, Ruokai Yin, and Joshua San Miguel. 2021. In-Stream
Correlation-Based Division and Bit-Inserting Square Root in Stochastic
Computing. IEEE Design & Test (2021). doi:10.1109/MDAT.2021.3050716

[80] Di Wu, Ruokai Yin, and Joshua San Miguel. 2021. Normalized Stabil-
ity: A Cross-Level Design Metric for Early Termination in Stochastic
Computing. In Asia and South Pacific Design Automation Conference.

[81] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In USENIX Symposium on Op-
erating Systems Design and Implementation.

[82] Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava.
2024. KV Cache is 1 Bit Per Channel: Efficient Large Language Model
Inference with Coupled Quantization. arXiv (2024).

[83] Youpeng Zhao, Di Wu, and Jun Wang. 2024. ALISA: Accelerating
Large Language Model Inference via Sparsity-Aware KV Caching. In
International Symposium on Computer Architecture.

https://doi.org/10.1109/ISLPED.2019.8824959
https://doi.org/10.1145/3316781.3317844
https://doi.org/10.1109/ICCD53106.2021.00014
https://doi.org/10.1109/ICCD53106.2021.00014
https://doi.org/10.1109/MDAT.2021.3050716

	Abstract
	1 Introduction
	2 Background
	2.1 Value Level Parallelism
	2.2 Nonlinear Implementations
	2.3 Large Language Model Inference
	2.4 Sustainable Computing

	3 VLP Nonlinear Approximation
	3.1 Formulation
	3.2 Input Approximation
	3.3 Value-Centric Approximation
	3.4 Accuracy Impact

	4 Mugi Architecture
	4.1 Nonlinear Approximation
	4.2 GEMM Optimization

	5 Experimental Setup
	5.1 Large Language Model
	5.2 Hardware
	5.3 Carbon Modeling
	5.4 Simulation

	6 Evaluation
	6.1 Nonlinear Approximation
	6.2 GEMM
	6.3 LLM workload

	7 Discussion
	7.1 Limitations
	7.2 Related Works

	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

	References

