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Abstract—Deep Neural Networks (DNNs) have gained sig-
nificant attention in both academia and industry due to the
superior application-level accuracy. As DNNs rely on compute- or
memory-intensive general matrix multiply (GEMM) operations,
approximate computing has been widely explored across the
computing stack to mitigate the hardware overheads. However,
better-performing DNNs are emerging with growing complexity
in their use of nonlinear operations, which incurs even more
hardware cost. In this work, we address this challenge by
proposing a reconfigurable systolic array to execute both GEMM
and nonlinear operations via approximation with distinguished
dataflows. Experiments demonstrate that such converging of
dataflows significantly saves the hardware cost of emerging DNN
inference.

I. Introduction

Research into deep neural networks (DNNs) has been
prospering in both academia and industry since the cham-
pionship of convolutional neural networks (CNNs) in image
recognition [5], with broad applications in computer vision,
natural language processing, speech recognition, etc. DNN
models are intensive in general matrix multiply (GEMM) oper-
ations [2], e.g., more than 90% of total operations are GEMM.
To mitigate the overhead in executing GEMMs, significant
efforts have been paid to approximate computing, including
approximate multipliers, either fixed units at design-time or
reconfigurable units at run-time, and the high level synthesis of
those approximate multipliers [13]. Those techniques reduce
both the energy and power consumption for GEMMs at the
cost of insignificant accuracy loss.
However, emerging DNNs with more sophisticated nonlin-

ear operations are benefiting less than classical DNNs, like
CNNs, from those approximation techniques, as more sophis-
ticated nonlinear operations than ReLU or max pooling [7] can
mitigate or even diminish the energy and power improvements.
Those nonlinear operations, e.g., div, exp, log, tanh, sigmoid,
softmax, etc., are of high complexity, high diversity and high
cost [12]. Naively implementing those nonlinear operations
alongside the approximate multipliers can increase the area and
power to nearly 6.0× and 4.2×, respectively [12]. To address
such inefficiencies, in [12] we initially propose to leverage
existing multiply–accumulate (MAC) units to virtualize those
nonlinear operations in a unified manner, so that the hard-
ware overhead to execute those nonlinear operations can be
minimized. We extend a standard MAC unit with extra logic,

including least zero detection, shifters, lookup tables (LUTs),
adders and multiplexers (MUX), to extensively support diverse
nonlinear operations. Despite improved compatibility, those
add-ons slabbed on a single processing element (PE) still
introduce high overheads, costing more area and power than
an individual MAC unit.
In this paper, to further mitigate the above area and power

overheads, we propose to virtualize the nonlinear operations
on eagerly optimized dataflow architectures. More specifically,
we equip systolic arrays with the additional capability to
approximate nonlinear operations. The proposed design is
highlighted with three features compared with [12]. First, the
dataflows for GEMM and approximate nonlinear operations
converge inside one single architecture. A weight stationary
dataflow is applied in Google TPU [3], a commercialized
systolic array for DNNs. We also observe that another weight
stationary dataflow can be applied to the Taylor approxima-
tions with Horner’s rule [12]. As such, we merge the two
weight stationary dataflows inside one architecture. Second,
our design disperses the extra logic in multiple PEs to increase
the architectural-level area and power savings. Though the
dataflows for GEMM and Taylor approximations are both
weight stationary, their PE designs differ. In [12], each PE
is extended with all required add-ons and able to perform
a complete operation. In the dataflow architecture, each PE
only performs a certain part of an operation. Our systolic
array removes unnecessary parts in each PE to save more
compared to arrays with all holistic PEs. Third, our design
involves an architectural-level approximation, orthogonal to
existing microarchitecture-level approximation techniques. Our
design targets the architecture-level approximation of varying
operations, i.e., we define the interaction among different
PEs, beyond the microarchitecture-level approximations as
in [1, 4, 9, 12, 13]. Such a different viewpoint allows the
coexistence of both the architecture- and microarchitecture-
level optimizations for further savings.
We list the contributions in this work as follows.
• We identify the deficiency of existing works in approxi-
mating nonlinear operations as the dedication to a single
PE, raising the cost of the entire PE array.

• We propose a cross-level approximated systolic array to
incorporate both GEMM and nonlinear operations and
amortize the area and power overheads across multiple
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Fig. 1: PEs for GEMM and UNO dataflows. 𝑋REG refers to
data registers, while MUL and ADD refer to the multiplier
and adder.

PEs for excessive hardware savings.
• We evaluate the accuracy and hardware efficiency of
our design on emerging DNNs with complex nonlinear
operations, demonstrating its superior area, power and
energy benefits over existing designs.

The rest content is organized as follows. Section II reviews
the weight stationary systolic array [3] and unified nonlinear
operations [12]. Then Section III articulates our proposal,
which is later evaluated in Section IV. The final Section V
concludes the paper.

II. Background
A. Weight Stationary Systolic Array
The weight stationary dataflow for GEMM, i.e., o = x ·w, is

applied in systolic arrays like Google TPU [3], which contains
multiple rows and columns of the PE in Figure 1a. First,
the weight w is loaded into the weight register, i.e., WREG.
Multiple cycles are needed to load a weight to the correct
PE from top to bottom. Second, the input x is continuously
streamed into the input register, i.e., IREG, and pipelined to the
right PE in the next cycle. Finally, the output o is calculated
by summing the partial result from the bottom PE and the
product of the weight and input in the current PE. When
all outputs corresponding to the current weights are streamed
out, the above three steps are repeated for a complete GEMM
operation. For the weight stationary dataflow, there have been
a plethora of schedule algorithms, some of which are publicly
available [8, 11].

B. Unified Nonlinear Operation
In [12], we propose to unify multiple nonlinear operations

(UNO), e.g., 𝑦/𝑥, exp(𝑥) and log(𝑥), using Taylor approxima-
tion for minimized hardware overheads. Taylor approximation
in Equation 1 is formulated as in Equation 2 and Equation 3

using Horner’s rule. In Equation 1, 𝑓 (𝑖) (𝑎) is the 𝑖-th derivative
of 𝑓 evaluated at input 𝑥 = 𝑎, and 𝑐𝑖 denotes the coefficient of
the 𝑖-th term. Then in Equation 2 and Equation 3, mac𝑛 is the
cascaded MAC result for degree-𝑛 Taylor approximation, scale
and offset are used to adjust mac𝑛 to the correct result, and
var is an affine transformation of input. Equation 3 requires
var 0 ≤ 𝑥 ≤ 1 for exp and 0.5 ≤ 𝑥 ≤ 1 for div and log. Please
refer to [12] for calculating scale, offset and var in detail.

𝑓𝑛 (𝑥) =
𝑛∑
𝑖=0

𝑓 (𝑖) (𝑎)

𝑖!
· (𝑥 − 𝑎)𝑖 =

𝑛∑
𝑖=0

𝑐𝑖 · (𝑥 − 𝑎)𝑖 , (1)

𝑓𝑛 (𝑥) = offset + mac𝑛 · scale, (2)

mac𝑖 =
{
|𝑐𝑛−𝑖 | + mac𝑖−1 · var if 1 < 𝑖 ≤ 𝑛,
|𝑐𝑛−1 | + |𝑐𝑛 | · var if 𝑖 = 1,

(3)

As such, every step in UNO is a MAC operation, whose PE is
shown in Figure 1b. Note the logic for the coefficients c, scale,
offset and var are not shown for simplicity. scale, offset and
var are input dependent, requiring extra hardware. In [12], the
choice of building a SIMD architecture based on UNO leads to
the duplication of those extra hardware in every PE, throttling
the overall area and power savings.
In this work, by observing that the coefficients c are inde-

pendent from the input, and can be statically stored, leading to
a weight stationary dataflow, we propose to merge the two PEs
in Figure 1 to a reconfigurable one, minimizing the overheads
to support multiple dataflows at the architecture level.

III. The Proposed Design

A. Processing Element
The proposed PEs towards the convergence of GEMM and

UNO dataflows are presented in Figure 2. The red components
are identical to those in Figure 1a, serving the original
GEMM dataflow. Unlike the PE in Figure 1a, our PEs are
heterogeneous with different inputs and outputs. Then the blue
components are added to route the data path to act as in
Figure 1b, serving the UNO dataflow. But unlike the UNO PE
in Figure 1b, the proposed PEs do not calculate the complete
output in an individual PE, but rather circulate an intermediate
result to the right PE, i.e., the approximation is now performed
spatially instead of temporally. The double stroke means both
𝑥 in IREG and 𝑣𝑎𝑟 in VREG are pipelined to the right PE. The
VREG is present together with IREG to minimize the overall
area and power; otherwise, the more expensive var logic needs
to exist in all PEs to generate var, scale or offset. For example,
var is needed when 1 ≤ 𝑖 ≤ 𝑛 in Equation 3. For area and
power saving, its calculation is done only in the leftmost PE,
with its value pipelined to right PEs. Then scale and offset are
accessed at the last step, so their logic can exist merely in the
rightmost PE (or a few rightmost PEs with proper pipelining
to ensure a reasonable critical path overhead, not shown in the
figure). Note that 𝑦 in the rightmost PE is only used in 𝑦/𝑥,
not in exp(𝑥) and log(𝑥).
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Fig. 2: The proposed PEs for hybrid dataflows. Corresponding PEs are located at the leftmost, middle and rightmost columns.
The red and blue colors are for GEMM and UNO dataflows, respectively.
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Fig. 3: The proposed systolic array for hybrid dataflows. The
red and blue colors are for GEMM and UNO dataflows,
respectively.

B. Systolic Array

With above heterogeneous PEs, we further present the entire
systolic array as in Figure 3, which contains one column of
leftmost, middle and rightmost PEs. We mark the essential in-
puts and outputs surrounding the systolic array, and emphasize
the GEMM and UNO dafaflows, i.e., how the input 𝑥 flows
in the systolic array to produce the output 𝑜 and 𝑓 . In both
dataflows, the input 𝑥 are pipelined from left to right PEs. The
GEMM dataflow in red aggregates the partial results vertically,
from bottom to top, in each column. The input 𝑥, weight 𝑤
and output 𝑜 are all stored in the on-chip SRAM, which needs
to interact with the off-chip DRAM [3]. On the other hand, the
UNO dataflow in blue collects the partial results horizontally,
from left to right, in each row. The input 𝑥 and output 𝑜
also need to travel inside the memory hierarchy, including
both the SRAM and DRAM. However, the coefficients 𝑐 are
stored with small LUTs, as they are predetermined and remain
identical in each column. For example, to support div, exp and
log simultaneously, 2 and 1 3-entry LUTs are needed for 𝑐

in the leftmost and middle columns, respectively. Given the
size of the systolic array as 𝑅-row-by-𝐶-column, one set of
var, scale and offset logic is shared by one row of 𝐶 PEs,
instead of per PE in [12], effectively reducing the area and
power overheads. In terms of dataflow schedule, we only need
to address the newly introduced UNO dataflow. Its schedule
is even simpler than the GEMM dataflow, as it is purely
elementwise, requiring minimal effort. Such an elementwise
behavior nearly reduces the memory access conflicts to zero.

C. Cross-Level Approximation
The above systolic array approximates nonlinear op-

erations at the architecture level. Applying more eager
microarchitecture-level approximations [1, 4, 9] leads to a
cross-level approximation to further reduce the area and power.
We look at a simple heuristic approximation, instead of
the accuracy-guaranteed approximation [6, 9]. Observing that
UNO dataflow proceeds from high to low order, the lower-
order Taylor terms are multiplied fewer times and can be more
eagerly approximated. Thus, we can apply less bits to the PEs
on the right, e.g., each PE has one less fraction bit than its
left PE. For example, a 𝑁-bit design of size 𝑅-by-𝐶 has 𝑁-bit
inputs for MAC in the leftmost PE, and (𝑁 −𝐶 + 1)-bit inputs
for MAC in the rightmost PE.

IV. Evaluation

A. Experimental Setup
This work aims to improve the efficiency of emerging DNNs

with 1) a PE-enhanced systolic array and 2) a cross-level
approximation, therefore both accuracy and performance are
evaluated. The accuracy is simulated with customized PyTorch
operators [10], covering both the operation- and application-
level results. Note that no retraining is involved to minimize
accuracy loss. The evaluated DNN is the CapsNet model in
[12], containing div, exp, log, sigmoid and softmax. On the
other hand, the performance evaluation, in terms of area, power
and energy efficiency, is done with 32nm TSMC technology
under 400MHz. We set the array size of our design and the
SIMD UNO array (of size 𝑅 ·𝐶) to 𝑅 = 𝐶 = 4 and 𝑅 = 𝐶 = 8
and bit width to 𝑁 = 16.
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B. Accuracy
1) Operation-Level
The operation-level absolute root mean square error of our

design is presented in Table I (Other values can be obtained
using the scale logic without accuracy drop). We observe that
our design exhibits slightly higher error compared to UNO
with an identical cycle 𝐶. Moreover, with a longer cycle count
𝐶, our design incurs higher errors due to less-bit MACs at the
end, in contrast to UNO’s increasing accuracy.

TABLE I: Absolute root mean square error of nonlinear
operations with certain input ranges. The total 16 bits are
assigned as 1-bit sign, 5-bit integer and 10-bit fraction.

Operation (Input range) Ours (𝑅, 𝐶, 𝑁 ) UNO (𝑅, 𝐶, 𝑁 )
4,4,16 8,8,16 4,4,16 8,8,16

div (𝑦 = 1, 0.5 ≤ 𝑥 ≤ 1) 0.022 0.039 0.021 0.001
exp (0 ≤ 𝑥 ≤ 1) 0.080 0.032 0.079 0.001
log (0.5 ≤ 𝑥 ≤ 1) 0.005 0.026 0.005 0.000

2) Application-Level
The DNN accuracy is shown in Table II. The floating-point

model has an accuracy of 98.78%. Our design has similar
accuracy loss compared to 𝐶-cycle UNO, even with the cross-
level approximation in most cases. For 𝑅 = 𝐶 = 8 and 𝑁 = 16,
our design has an obvious accuracy drop due to the cross-layer
approximation aggressively reduces the fraction bits.

TABLE II: Accuracy of CapsNet inference with varying allo-
cations of the 16 bits to the sign, integer and fraction.

Sign-Integer-Fraction (bit) Ours (𝑅, 𝐶, 𝑁 ) UNO (𝑅, 𝐶, 𝑁 )
4,4,16 8,8,16 4,4,16 8,8,16

1-7-8 98.70 86.27 98.69 98.68
1-6-9 98.87 97.75 98.87 98.85
1-5-10 98.75 98.36 98.76 98.78
1-4-11 94.05 93.55 93.98 93.78

C. Performance
The performance results are in Table III, with a focus on

the computing kernel. The total 16 bits are allocated as 1-bit
sign, 5-bit integer and 10-bit fraction.

TABLE III: Hardware efficiency of the computing kernel.

Performance Ours (𝑅, 𝐶, 𝑁 ) UNO (𝑅, 𝐶, 𝑁 ) Improve (%)
4,4,16 8,8,16 4,4,16 8,8,16 4,4,16 8,8,16

Area (mm2) 0.13 0.41 0.18 0.73 29.4 43.3
Power (mW) 8.33 28.52 11.45 46.12 27.2 38.2
Throughput
(ksamples/s) 0.15 0.52 0.15 0.52 0.0 0.0
Energy
Efficiency
(ksamples/J)

18.58 18.34 13.52 11.34 37.4 61.7

1) Area
The overall area of our design is up to 43.3% smaller than

UNO, due to three reasons. First, the extra logic to support
nonlinear operations is shared by multiple PEs in our design,
amortizing the overhead over MAC units. The overhead is
reduced from 38.9% in UNO to 15.7% in our PEs. Second, our
design allows a cross-level approximation without significant

accuracy loss. The cross-level approximation reduces the area
by 27.8% compare to an array without the extra microarchitec-
tural approximation. Third, our design is a systolic array, which
accumulates inside the array, while UNO requires an additional
adder tree for accumulation. The adder tree contributes to
around 7% of the total UNO area.
2) Power
The power results of our design and UNO are shown in

Table III. Our design also exhibits smaller power, up to 38.2%,
due to identical reasons in the area.
3) Energy Efficiency
To achieve the energy efficiency, we first estimate the

throughput (the reciprocal of runtime) of CapsNet for our
design and UNO. Data schedule for perfect runtime is beyond
the scope of this work. Instead, we assume that the computing
arrays in our design and UNO both have a utilization of 50%
for GEMM and 80% for nonlinear operations to estimate the
runtime, which is identical to that in [12]. Then the energy
efficiency is computed as the throughput divided by the power.
Due to the smaller power, our design outperforms UNO in
terms of the energy efficiency by up to 61.7%.

V. Conclusion
In this work, we identify the overheads of our initial work

in executing nonlinearity-intensive emerging deep neural net-
works. We propose a reconfigurable systolic array to flexibly
execute the dataflow for either GEMM or nonlinear operations
and boost the efficiency with the cross-level approximation,
including both the architecture and microarchitecture levels.
The area, power and energy efficiency of our design is up to
43.3%, 38.2% and 61.7% higher than our initial work. The
accuracy simulation codes are available online [10].
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