
LoAS: Fully Temporal-Parallel Dataflow
for Dual-Sparse Spiking Neural Networks

Ruokai Yin 𝟏, Youngeun Kim 1,

Di Wu 2, and Priyadarshini Panda 1

1 Department of ECE

Yale University

2 Department of ECE

University of Central Florida

Email: ruokai.yin@yale.edu

57th MICRO

mailto:ruokai.yin@yale.edu

Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results

AI workloads in GPU era

2010 2015 2020 2025

Language

Games

Vision

AlexNet

ResNets

BERT

GPT-2

GPT-3AlphaGoZero

AlphaZero

Neural machine

translation

Doubling every

3.5 months

Doubling every

2 months

Power matters!

Smart Drone

~50 W

Adult Hornet

~50 𝜇W

Human Brain

~20 W

There exists a huge gap in terms of the power consumption between

the artificial intelligence and the nature intelligence.

Nature

Intelligence

Artificial

Intelligence
…

AlphaGo (176 GPUs)

~200 kW

+
Nature-Inspired

Machine

Intelligence

SNNs as compute-friendly nature machine intelligence

Spiking Neural Networks (SNNs)

Artificial Neural Networks (ANNs)

Power Cost: 1x*

Power Cost: 32x*

ANN input sparsity: ~50%

SNN input sparsity: ~90%

Accumulator

Multiplier

0.3
w

(float)

0/1
Accumulator

w

(unary)

Logical &
& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0

0 else

SNN

ANN

timesteps

*Han, Song, et al. "EIE: Efficient inference engine on compressed deep neural network.”, 2016.

timesteps (T)

Performance Gap: SNNs vs ANNs

BiT-L[1]

DINO-V2[2]

Direct

tdBN
SNAS-Net

SDT[3] STAtten[4]

T=8

T=6
T=5

T=4

T= 4

[1] Kolesnikov, et al., “Big transfer (bit): General visual representation learning.”, ECCV 2020
[2] Oquab, et al., "Dinov2: Learning robust visual features without supervision.”, TMLR 2024
[3] Yao et al., “Spike-driven Transformer”, NeurIPS 2024

[4] Lee et al., “Spiking Transformer with Spatial-Temporal Attention”, arXiv, 2024

SNN model sizes also grow

ResNet19

(~48 MB)

Transformer (8-768)

(~265 MB~ 300MB)

32-bit SRAM Read (1MB)

32-bit DRAM Read 640x

100x

(SNN)

logical &
+ accumulation

(ANN)

Multiplication
+ accumulation

Operation Norm Energy*Precision

W – FP32

S – INT1

W – FP32

X – FP32

1x

4.6x

SNN model sizes will keep scaling up ➚

When model sizes grow larger, the data

movements can become the hurdle.

*Horowitz et al. "1.1 computing's energy problem (and what we can do about it).”, ISSCC 2014.

Compress the SNNs by pruning

Epoch 1

Epoch 2

Epoch 3
…

Epoch N

Epoch 4

Train N epoch + T timestep

Pruning

Re-initialization

ResNet19

dense: (~48 MB)

0.6 MB

3.6 MB

The resulted weight matrices usually have

around 95% sparsity.

3.3 MB

[1]

[1] Chen et al., “State transition of dendritic spines improves learning of sparse spiking neural networks.”, ICML 2022.

[2] Kim et al., “Exploring lottery ticket hypothesis in spiking neural networks.”, ECCV 2022.

[2]

[3]

[3] Liu et al., “LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal

Compressive Network Search and Joint Optimization.”, IJCAI 2024.

2.9 MB

Pruning technique removes the redundant

synaptic connections during the training.

Accelerating dual-sparse SNNs

Epoch 1

Epoch 2

Epoch 3
…

Epoch N

Epoch 4

Train N epoch + T timestep

Pruning

Re-initialization

Dual-sparse SNN workloads

Prunned SNN networks

Accelerating the dual-sparse SNNs becomes the

acceleration of Sparse-matrix-sparse-matrix (spMspM).

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0

0 else

Output Spikes

Spikes are sparse due to the

LIF-based activation function.

Weights are sparse due to

the iterative pruning.

Sparse weight

matrix

X

Sparse spike

matrix

VV

Timestep

Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results

Where to deploy dual-sparse SNNs?

Sparse weight

matrix

Dual-sparse SNN workloads

X

Sparse spike

matrix

VV

Timestep

Where to deploy?

SpinalFlow

(ISCA `20)

PTB

(HPCA `22)

Stellar

(HPCA `24)

Prior SNN accelerators

Spike Sparsity

Weight Sparsity

Spike Sparsity

Weight Sparsity

Spike Sparsity

Weight Sparsity

Efficient at leveraging the spike sparsity.

But not support the weight sparsity.

Where to deploy dual-sparse SNNs?

Sparse weight

matrix

Dual-sparse SNN workloads

X

Sparse spike

matrix

VV

Timestep

Where to deploy?

SparTen

MICRO `19

Prior ANN spMspM accelerators?

Input Sparsity

Weight Sparsity

Efficient at leveraging dual-sparsity for ANNs.

However, we observe two challenges for

deploying dual-sparse SNNs.

GoSPA

ISCA `21

Gamma

ASPLOS `21

…

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
1/0
w

Logical &

weights

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
0
w

Logical &

weightsCycle 1

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
0
w

Logical &

weightsCycle 2

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
1
w

Logical &

weightsCycle 3

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
0
w

Logical &

weightsCycle 4

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
1
w

Logical &

weightsCycle 5

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011

Accumulator
1
w

Logical &

weightsCycle 6

Challenge 1: compression efficiency

Input

spikes

Input spike train:

001011 # of compute: 3

of weight fetch: 3

of PE cycles: 6Accumulator
1/0
w

Logical &

weights

Not saving PE cycles!

Challenge 1: Compression Efficiency

Input

spikes

Input spike train:

001011 # of compute: 3

of weight fetch: 3

of PE cycles: 6Accumulator
1/0
w

Logical &

weights

Not saving PE cycles!

Accumulator

w

weights

indices

[2,4,5] Match

of compute: 3

of weight fetch: 3

of PE cycles: 3

Input spike train:

001011

Challenge: compression efficiency for spikes is low!

In this example:

3x3-bits CSR to compress 3 bits of data

3/9 -> only 0.33 (<1) compression efficiency

We need to compress the

spikes to save PE cycles.

Challenge 2: Dataflow Design Space

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]

×

N

K

K

M

input weight

Dual-sparse ANN spMspM

Different dataflow is the different permutation of the 3-nested for loops.

for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

for m in [0,K-1]
for k in [0,M-1]
for n in [0,N-1]

Inner-Product Outer-Product Gustavson’s

Challenge 2: Dataflow Design Space

×

N

K

K

weight

Dual-sparse SNN spMspM

K

M

K

inputs across timesteps
T

Challenge 2: Dataflow Design Space

×

N

K

K

weight

Dual-sparse SNN spMspM

K

M

K

inputs across timesteps
T

This translates to an extra
temporal loop (t-loop)

for t in [0,T-1]

Challenge: where to position the t-loop?
for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

Original 6 permutations

for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

for t in [0,T-1]

Now 24 possible permutations

Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results

Observations of SNN spMspM dataflow

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]

for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

for m in [0,K-1]
for k in [0,M-1]
for n in [0,N-1]

Inner-Product Outer-Product Gustavson’s

Observation 1: t-loop increases the data traffic (weights and outputs) of

the dimensions below it by T times.*

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1] repeat T times

Observations of SNN spMspM dataflow

for t in [0,T-1]
for n in [0,N-1]
for k in [0,K-1]

for t in [0,T-1]
for m in [0,M-1]
for n in [0,N-1]

for t in [0,T-1]
for k in [0,M-1]
for n in [0,N-1]

Inner-Product Outer-Product Gustavson’s

Observation 1: t-loop increases the data traffic (weights and outputs) of

the dimensions below it by T times.*

for m in [0,M-1] for k in [0,K-1] for m in [0,M-1] repeat T times

Observations of SNN spMspM dataflow

Inner-Product Outer-Product Gustavson’s

Observation 1: t-loop increases the data traffic (weights and outputs) of

the dimensions below it by T times.*

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]

for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

for m in [0,K-1]
for k in [0,M-1]
for n in [0,N-1]

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1]

Solution 1: position t-loop as the innermost loop.

Observations of SNN spMspM dataflow

Inner-Product Outer-Product Gustavson’s

Observation 2: t-loop expands the partial-sums (rows) in original dataflow

by T times, regardless of the position.

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]

for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

for m in [0,K-1]
for k in [0,M-1]
for n in [0,N-1]

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1]

T times larger

Observations of SNN spMspM dataflow

Inner-Product Outer-Product Gustavson’s

Observation 2: t-loop expands the partial-sums (rows) in original dataflow

by T times, regardless of the position.

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]

for k in [0,K-1]
for m in [0,M-1]
for n in [0,N-1]

for m in [0,K-1]
for k in [0,M-1]
for n in [0,N-1]

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1]

Solution 2: reduce the partial sums as early as possible (put k-loop as

second inner).

FTP dataflow

Fully temporal-parallel dataflow

We further spatially unroll the t-loop. This removes the latency penalty

with the minimal hardware instances duplication.

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]
parallel-for t in [0,T-1]

PTB

(HPCA `22)

…

Partially Temporal-Parallel

…
≈

Fully Temporal-Parallel

Ours

SpinalFlow

(ISCA `20)

…

Temporal Sequential

dual-sparse SNN

Layer 1 Layer 2 Layer N

…

Tick-Batch Temporal-Sequential

t0
t1

t2
t3

Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results

0 1 01

0 0 0

0 1 1 1

0 0 0 0

� [0,0]

t=0 t=3…

0� [0,1]

� [0,2]

� [0,3]

A
c
c
e

s
s
 d

ir
e

c
ti
o

n

FTP-friendly compression

Recall from the challenge 1, the compression efficiency of the unary spikes is low.

The intuition here is that position index can only encodes the data at spatial

location.

0 0 01

0 0 1

0 0 0 1

1 0 0 1

row 0 in A

k=0 k=3…

0

A[�]

A[�]

A[�]

A[�]

Real Data

ptrbm

1001

� , � ,

1010 0111

Compressed Fiber

� � � �

position
� ,

� ,

� ,

� ,

� ,

Input Neuron Behavior

temporal dimension

spatial

dimension

temporal dimension

spatial

dimension

Each spatial location only contains

1-bit information for each timestep.

FTP-friendly compression

Fortunately, data on different temporal dimension shares the same spatial location.

s
p

a
ti
a

l
d
im

e
n

s
io

n

0 0 01

0 0 1

0 0 0 1

1 0 0 1

row 0 in A

k=0 k=3…

0

A[�]

A[�]

A[�]

A[�]

Unpacked Real Data

ptrbm1001

� , � ,

1010 0111

Compressed Fiber

� � � �

position
� ,

� ,

� ,

� ,

� ,

Input Neuron Behavior

� , � ,

1010 0111

� , � ,

0000

0000

Packed Real Data

A[� ,� ,� ,�]

1

2

3
Pack along the temporal dim

0 0 01

0 0 1

0 0 0 1

1 0 0 1

row 0 in A

k=0 k=3…

0

A[�]

A[�]

A[�]

A[�]

Unpacked Real Data

ptrbm1001

� , � ,

1010 0111

Compressed Fiber

� � � �

position
� ,

� ,

� ,

� ,

� ,

Input Neuron Behavior

� , � ,

1010 0111

� , � ,

0000

0000

Packed Real Data

A[� ,� ,� ,�]

1

2

3

silent neurons

Only store the compressed non-silent neurons

0 1 01

0 0 0

0 1 1 1

0 0 0 0

� [0,0]

t=0 t=3…

0� [0,1]

� [0,2]

� [0,3]

A
c
c
e

s
s
 d

ir
e

c
ti
o

n

temporal dimension

FTP-friendly compression

0 0 01

0 0 1

0 0 0 1

1 0 0 1

row 0 in A

k=0 k=3…

0

A[�]

A[�]

A[�]

A[�]

Real Data

ptrbm

1001

� , � ,

1010 0111

Compressed Fiber

� � � �

position
� ,

� ,

� ,

� ,

� ,

Input Neuron Behavior

0 0 01

0 0 1

0 0 0 1

1 0 0 1

row 0 in A

k=0 k=3…

0

A[�]

A[�]

A[�]

A[�]

Unpacked Real Data

ptrbm1001

� , � ,

1010 0111

Compressed Fiber

� � � �

position
� ,

� ,

� ,

� ,

� ,

Input Neuron Behavior

� , � ,

1010 0111

� , � ,

0000

0000

Packed Real Data

A[� ,� ,� ,�]

1

2

3

Benefit 1: better compression efficiency (8/4=2)

Benefit 2: Contiguous memory access for FTP dataflow

𝑎0,3
0111

…
≈

Fully Temporal-Parallel

for m in [0,M-1]
for n in [0,N-1]
for k in [0,K-1]
parallel-for t in [0,T-1]

Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results

LoAS

To encapsulate both the FTP dataflow and FTP-friendly compression, we

design LoAS (Low-latency inference Accelerator for dual-sparse SNNs.)

Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P
-L

IF

P
-L

IF

P
-L

IF
…

Scheduler

Compressor

Key component:

Temporal parallel processing element (TPPE)

TP
PE

P
-L

IF Handle the LIF function

Process the compressed data

in FTP dataflow

LoAS

TP
PE

P
-L

IF

Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P-
LI

F

P-
LI

F

P-
LI

F

…

Scheduler

Compressor Streaming data broadcast bus

+

+

U

Data B

Bitmask
AB

� � � �

�

…

Fetcher
A

+

� � �

0

+

� � �� � �

<<

0 <<

� � �

+� � � �

…

…

� � � �

� � �

� � �

v

ch
e

ck
e

r

Data B is sent in as the compressed form:

𝑏0,1 𝑏0,7
…

𝑏𝑚 𝑝𝑡𝑟

LoAS

TP
PE

P
-L

IF

Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P-
LI

F

P-
LI

F

P-
LI

F

…

Scheduler

Compressor Streaming data broadcast bus

+

+

U

Data B

Bitmask
AB

� � � �

�

…

Fetcher
A

+

� � �

0

+

� � �� � �

<<

0 <<

� � �

+� � � �

…

…

� � � �

� � �

� � �

v

ch
e

ck
e

r

A and B’s bitmasks are also sent.

𝑏𝑚 𝑝𝑡𝑟

𝑏0,1 𝑏0,7
…

𝑏𝑚 𝑝𝑡𝑟

(spikes)𝑏𝑚𝐴 0100101…

(weights)𝑏𝑚𝐵 1101001…

LoAS

TP
PE

P
-L

IF

Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P-
LI

F

P-
LI

F

P-
LI

F

…

Scheduler

Compressor Streaming data broadcast bus

+

+

U

Data B

Bitmask
AB

� � � �

�

…

Fetcher
A

+

� � �

0

+

� � �� � �

<<

0 <<

� � �

+� � � �

…

…

� � � �

� � �

� � �

v

ch
e

ck
e

r

Bitmasks are sent through the inner-join unit

U

Local offsets

𝑏𝑚 𝑝𝑡𝑟

𝑏0,1 𝑏0,7
…

𝑏𝑚 𝑝𝑡𝑟

(spikes)𝑏𝑚𝐴 0100101…

(weights)𝑏𝑚𝐵 1101001…

U

1,6 …
Local

offsets

𝑎0,3 𝑎0,5

LoAS

TP
PE

P
-L

IF

Global Cache

Memory

TP
PE

…

TP
PE

TP
PE

P-
LI

F

P-
LI

F

P-
LI

F

…

Scheduler

Compressor Streaming data broadcast bus

+

+

U

Data B

Bitmask
AB

� � � �

�

…

Fetcher
A

+

� � �

0

+

� � �� � �

<<

0 <<

� � �

+� � � �

…

…

� � � �

� � �

� � �

v

ch
e

ck
e

r

Use the local offsets to get global offsets and

then fetch data and perform computation.

U
𝑏𝑚 𝑝𝑡𝑟

𝑏0,1 𝑏0,7
…

𝑏𝑚 𝑝𝑡𝑟

TPPE

Global Fetch

(spikes)𝑏𝑚𝐴 0100101…

(weights)𝑏𝑚𝐵 1101001…

U

1,6 …
Local

offsets

Local offsets

Global offsets

Global

offsets

LoAS

* "SparTen: A sparse tensor accelerator for convolutional neural networks."MICRO ‘19

(spikes)𝑏𝑚𝐴 0100101…

(weights)𝑏𝑚𝐵 1101001…

U

1,6 …
Local

offsets

Global

offsets

To get the global offsets, we need expensive prefix sum circuits for each

operands.

A B

(spikes) (weights)

~45%System

Power

*

LoAS

Intuition: preemptively decode and

accumulate B using the fast prefix sum, then

later make corrections on pre-computed results

using the decoded A from the laggy prefix sum.

�

�

�

�

�

TPPE

…

Global

Cache

00101011
AND-resultbm-B

bm-A
10101011
01101011

�

�

+

Pseudo-Acc

FIFO-B

Laggy Prefix-sum

not ready

Fast Prefix-sum

1

1

FIFO-mp

�

+

12

�
�

not ready

�

+

1

2

�
�

ready

�

+

4

�
�

ready

� � � � �

�

3

check

1111
discard

�

� � � � �

check
1010

3

2 �
+

+

C-Acc	�

C-Acc	�

correct

Efficient Inner-join scheme in LoAS

cycle1

cycle2 cycle3 cycle4

laggy

fast

(cheap)

(expensive)

We propose an SNN-friendly inner-join units with a combination of fast

prefix sum (for B) and laggy prefix sum (for A).

A B

(spikes) (weights)

~15%System

Power
A B

(spikes) (weights)

~45%System

Power

*

Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results

Baselines

Inner-Product

SparTen MICRO ’19

Outer-Product

GoSPA ISCA ‘21

Gustavson’s

Gamma ASPLOS ‘21

Accumulator

Multiplier

Accumulator

Logical &

Simplify and modify the original ANN spMspM accelerators for running SNNs.

Simplify the MAC units to leverage SNN’s unary spikes.

LoAS (T=4) vs. Baselines (T=4)

Up to 8.51x speedup

Up to 3.68x efficiency

LoAS (T=4) vs. ANN SparTen (8bit)

Compare to dual-sparse ANNs (VGG16) running on SparTen and Gamma,

LoAS achieves on average 1.9x more energy efficiency.

Mainly due to 1. the higher sparsity in LIF neuron (79%) vs. ReLU (43.9%).

 2. the lower input bitwidth (4-bit vs. 8-bit)

Both SNNs and

ANNs have weights

in 8-bits

LoAS (T=4) vs. dense SNN accelerators

Compared to existing dense SNN accelerators (VGG16), LoAS achieves on

average 2.8x more energy efficiency and up to 46.9x speedup.

Mainly due to the leverage of dual-sparsity (less data fetch of weights).

Conclusion

• There lacks prior hardware deployment solutions for dual-sparse SNN workloads

(pruned SNNs).

• We explore the dataflow design space for dual-sparse SNNs and propose the fully

temporal parallel (FTP) dataflow.

• We further propose an FTP-friendly compression method for unary spikes that

ensures the compression efficiency and contiguous memory access for FTP

dataflow.

• We encapsulate those techniques in LoAS together with an SNN-friendly inner-

joint unit design.

• LoAS is more energy efficient and faster compared to its SNN-like spMspM

baselines, ANN spMspM designs, and dense SNN designs.

• We hope this work can start a new round of design space exploration in SNN’s

spMspM accelerations.

Thank you! Q&A

Code available at: https://github.com/Intelligent-Computing-Lab-Yale/LoAS

Also here!

Feel free to email me questions!

ruokai.yin@yale.edu

https://github.com/Intelligent-Computing-Lab-Yale/LoAS
mailto:ruokai.yin@yale.edu

	Slide 1: LoAS: Fully Temporal-Parallel Dataflow for Dual-Sparse Spiking Neural Networks
	Slide 2: Contents
	Slide 3: AI workloads in GPU era
	Slide 4: Power matters!
	Slide 5: SNNs as compute-friendly nature machine intelligence
	Slide 6: Performance Gap: SNNs vs ANNs
	Slide 7: SNN model sizes also grow
	Slide 8: Compress the SNNs by pruning
	Slide 9: Accelerating dual-sparse SNNs
	Slide 10: Contents
	Slide 11: Where to deploy dual-sparse SNNs?
	Slide 12: Where to deploy dual-sparse SNNs?
	Slide 13: Challenge 1: compression efficiency
	Slide 14: Challenge 1: compression efficiency
	Slide 15: Challenge 1: compression efficiency
	Slide 16: Challenge 1: compression efficiency
	Slide 17: Challenge 1: compression efficiency
	Slide 18: Challenge 1: compression efficiency
	Slide 19: Challenge 1: compression efficiency
	Slide 20: Challenge 1: compression efficiency
	Slide 21: Challenge 1: Compression Efficiency
	Slide 22: Challenge 2: Dataflow Design Space
	Slide 23: Challenge 2: Dataflow Design Space
	Slide 24: Challenge 2: Dataflow Design Space
	Slide 25: Contents
	Slide 26: Observations of SNN spMspM dataflow
	Slide 27: Observations of SNN spMspM dataflow
	Slide 28: Observations of SNN spMspM dataflow
	Slide 29: Observations of SNN spMspM dataflow
	Slide 30: Observations of SNN spMspM dataflow
	Slide 31: FTP dataflow
	Slide 32: Contents
	Slide 33: FTP-friendly compression
	Slide 34: FTP-friendly compression
	Slide 35: FTP-friendly compression
	Slide 36: Contents
	Slide 37: LoAS
	Slide 38: LoAS
	Slide 39: LoAS
	Slide 40: LoAS
	Slide 41: LoAS
	Slide 42: LoAS
	Slide 43: LoAS
	Slide 44: Contents
	Slide 45: Baselines
	Slide 46: LoAS (T=4) vs. Baselines (T=4)
	Slide 47: LoAS (T=4) vs. ANN SparTen (8bit)
	Slide 48: LoAS (T=4) vs. dense SNN accelerators
	Slide 49: Conclusion
	Slide 50: Thank you! Q&A

