LoAS: Fully Temporal-Parallel Dataflow for Dual-Sparse Spiking Neural Networks

Ruokai Yin ¹, Youngeun Kim ¹,

Di Wu², and Priyadarshini Panda¹

¹ Department of ECE Yale University

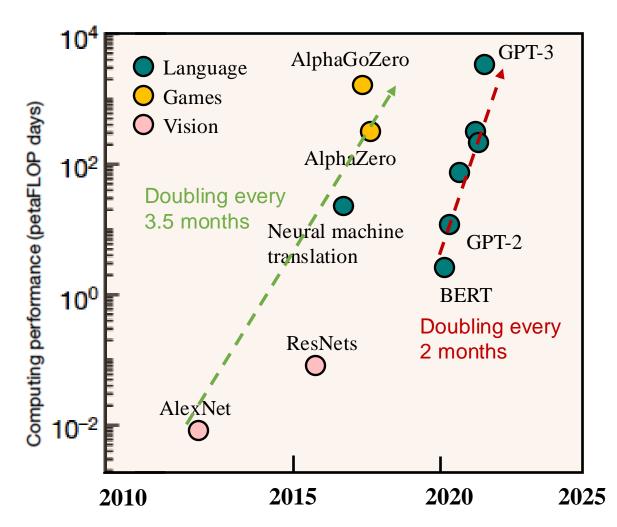
² Department of ECE University of Central Florida

Email: ruokai.yin@yale.edu

Contents

- Motivation of accelerating dual-sparse SNNs
- Challenges of accelerating dual-sparse SNNs
- FTP (fully temporal-parallel) dataflow
- FTP-friendly compression
- LoAS and SNN-friendly inner-joint
- Results

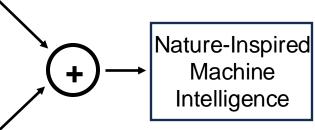
Al workloads in GPU era



Power matters!

There exists a huge gap in terms of the power consumption between the artificial intelligence and the nature intelligence.

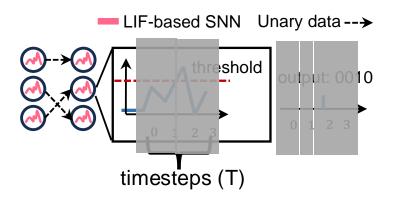
Artificial Intelligence

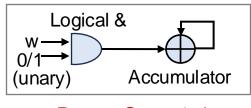


Nature Intelligence

SNNs as compute-friendly nature machine intelligence

Spiking Neural Networks (SNNs)

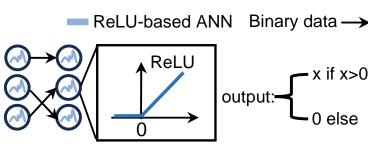


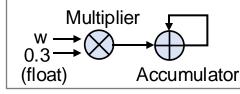


Power Cost: 1x*

90 80 50 SNN ANN 40 30 2 timesteps

Artificial Neural Networks (ANNs)



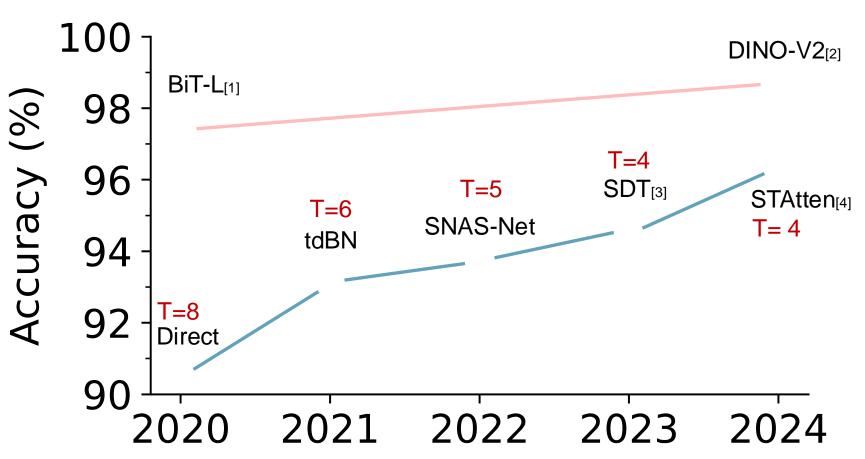


Power Cost: 32x*

SNN input sparsity: ~90%

ANN input sparsity: ~50%

Performance Gap: SNNs vs ANNs



[1] Kolesnikov, et al., "Big transfer (bit): General visual representation learning.", ECCV 2020

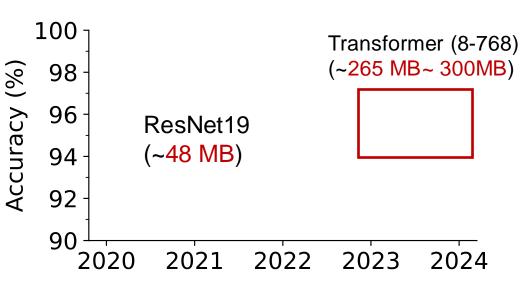
[2] Oquab, et al., "Dinov2: Learning robust visual features without supervision.", TMLR 2024

[3] Yao et al., "Spike-driven Transformer", NeurIPS 2024

[4] Lee et al., "Spiking Transformer with Spatial-Temporal Attention", arXiv, 2024

SNN model sizes also grow

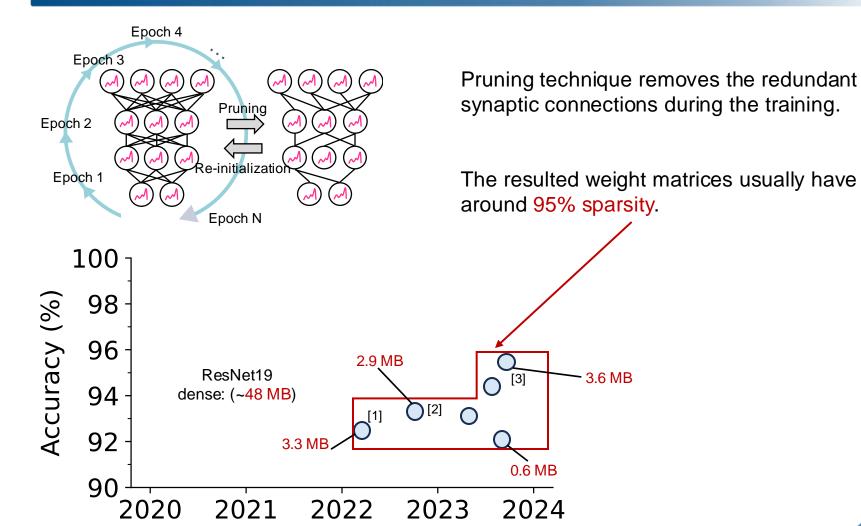
SNN model sizes will keep scaling up 🖍

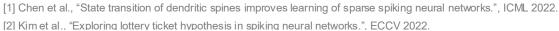


Operation	Precision	Norm Energy*
(SNN) logical & + accumulation	W – FP32 S – INT1	1x
(ANN) Multiplication + accumulation	W – FP32 X – FP32	4.6x
32-bit SRAM Read (1MB)		100x
32-bit DRAM Read		640x

When model sizes grow larger, the data movements can become the hurdle.

Compress the SNNs by pruning



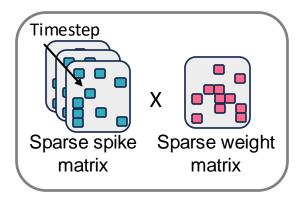


Accelerating dual-sparse SNNs

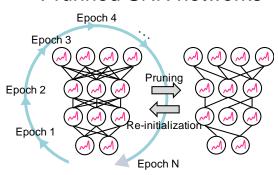
Output Spikes Output Spikes Output Spikes Output Spikes

Spikes are sparse due to the LIF-based activation function.

Dual-sparse SNN workloads



Prunned SNN networks



Weights are sparse due to the iterative pruning.

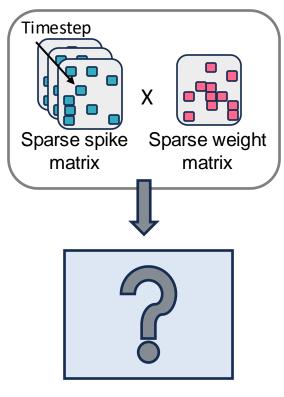
Accelerating the dual-sparse SNNs becomes the acceleration of Sparse-matrix-sparse-matrix (spMspM).

Contents

- Motivation of accelerating dual-sparse SNNs
- Challenges of accelerating dual-sparse SNNs
- FTP (fully temporal-parallel) dataflow
- FTP-friendly compression
- LoAS and SNN-friendly inner-joint
- Results

Where to deploy dual-sparse SNNs?

Dual-sparse SNN workloads



Where to deploy?

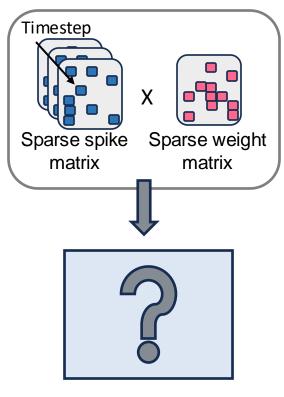
Prior SNN accelerators

SpinalFlow (ISCA `20)	Spike Sparsity Weight Sparsity
PTB (HPCA `22)	Spike Sparsity Weight Sparsity
Stellar (HPCA `24)	Spike Sparsity Weight Sparsity

Efficient at leveraging the spike sparsity. But not support the weight sparsity.

Where to deploy dual-sparse SNNs?

Dual-sparse SNN workloads

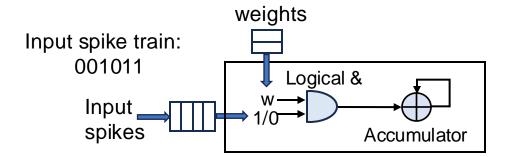


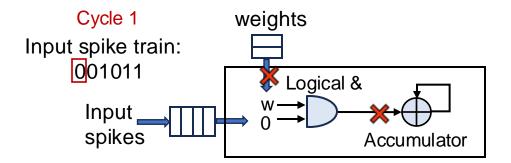
Where to deploy?

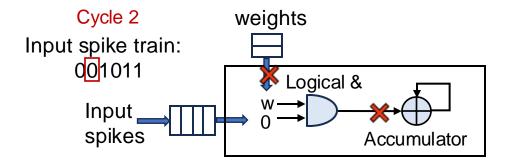
Prior ANN spMspM accelerators?

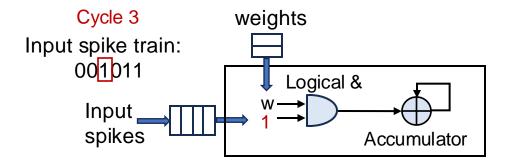
Efficient at leveraging dual-sparsity for ANNs.

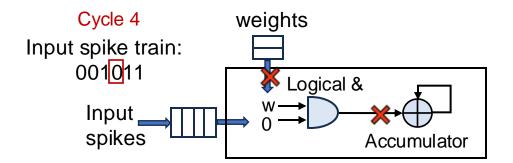
However, we observe two **challenges** for deploying dual-sparse SNNs.

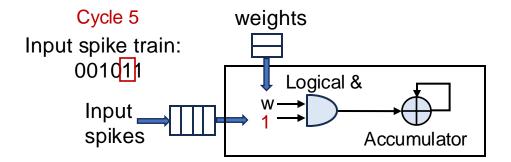


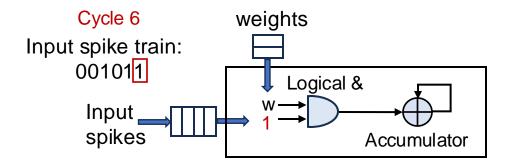


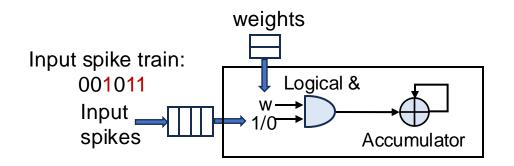






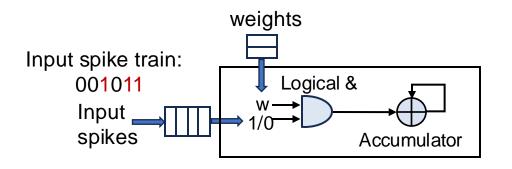






```
# of compute: 3
# of weight fetch: 3
# of PE cycles: 6
```

Not saving PE cycles!



of compute: 3
of weight fetch: 3
of PE cycles: 6

Not saving PE cycles!

of compute: 3
of weight fetch: 3
of PE cycles: 3

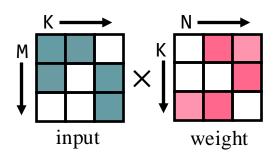
We need to compress the spikes to save PE cycles.

Challenge: compression efficiency for spikes is low!

In this example: 3x3-bits CSR to compress 3 bits of data 3/9 -> only 0.33 (<1) compression efficiency

Challenge 2: Dataflow Design Space

Dual-sparse ANN spMspM

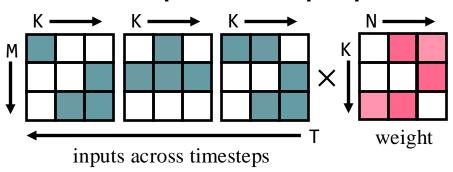


Different dataflow is the different permutation of the 3-nested for loops.

Gustavson's

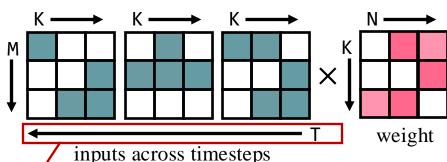
Challenge 2: Dataflow Design Space

Dual-sparse SNN spMspM



Challenge 2: Dataflow Design Space

Dual-sparse SNN spMspM



This translates to an extra temporal loop (t-loop)

for t in [0,T-1]

Challenge: where to position the t-loop?

Original 6 permutations

for k in [0,K-1] for m in [0,M-1] for n in [0,N-1]

Now 24 possible permutations

```
for t in [0,T-1]
  for k in [0,K-1]
    for m in [0,M-1]
    for n in [0,N-1]
```


Contents

- Motivation of accelerating dual-sparse SNNs
- Challenges of accelerating dual-sparse SNNs
- FTP (fully temporal-parallel) dataflow
- FTP-friendly compression
- LoAS and SNN-friendly inner-joint
- Results

Observation 1: t-loop increases the data traffic (weights and outputs) of the dimensions below it by **T** times.*

Inner-Product

Outer-Product

Gustavson's

Observation 1: t-loop increases the data traffic (weights and outputs) of the dimensions below it by **T** times.*

Observation 1: t-loop increases the data traffic (weights and outputs) of the dimensions below it by **T** times.*

```
for m in [0,M-1] for k in [0,K-1] for m in [0,K-1] for h in [0,N-1] for k in [0,M-1] for h in [0,N-1] for n in [0,N-1] for t in [0,T-1] for t in [0,T-1] for t in [0,T-1]
```

Solution 1: position **t-loop** as the innermost loop.

Observation 2: **t-loop** expands the partial-sums (rows) in original dataflow by **T** times, regardless of the position.

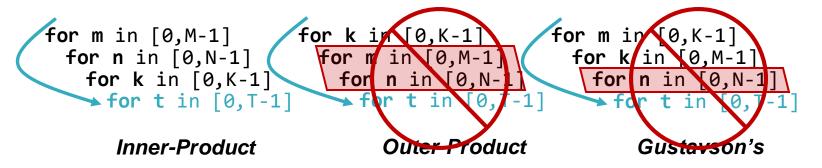
```
for m in [0,M-1] for k in [0,K-1] for m in [0,K-1] for k in [0,M-1] for k in [0,K-1] for n in [0,M-1] for t in [0,T-1] for t in [0,T-1]
```

Inner-Product

Outer-Product

Gustavson's

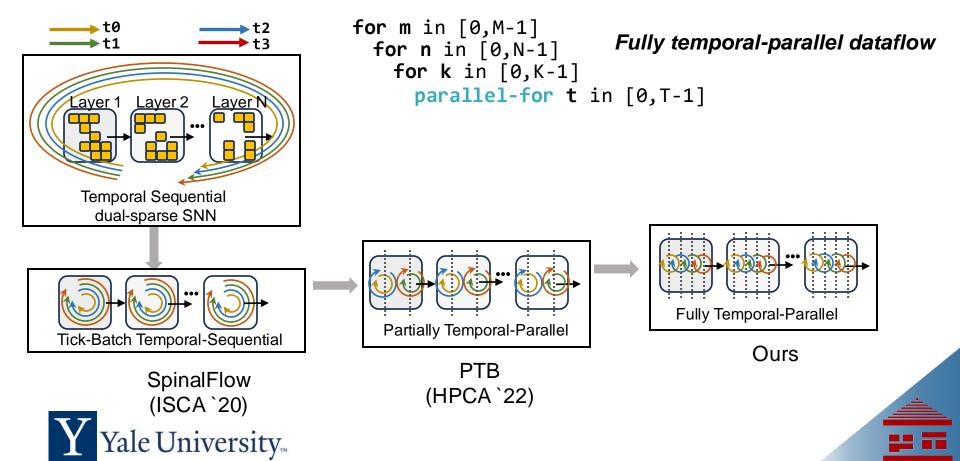
Observation 2: **t-loop** expands the partial-sums (rows) in original dataflow by **T** times, regardless of the position.



Solution 2: reduce the partial sums as early as possible (put **k-loop** as second inner).

FTP dataflow

We further spatially unroll the **t-loop**. This removes the latency penalty with the minimal hardware instances duplication.



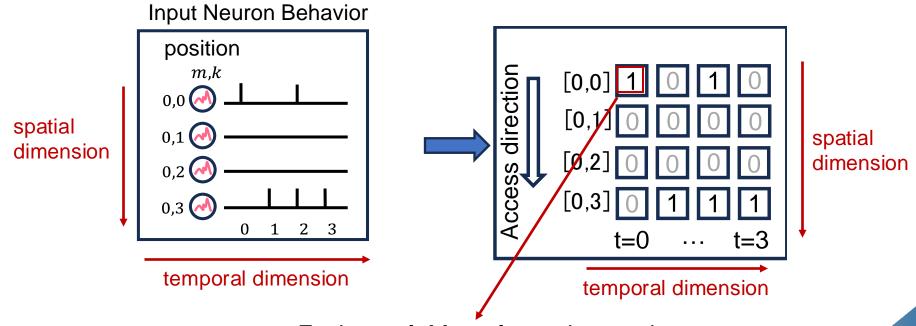
Contents

- Motivation of accelerating dual-sparse SNNs
- Challenges of accelerating dual-sparse SNNs
- FTP (fully temporal-parallel) dataflow
- FTP-friendly compression
- LoAS and SNN-friendly inner-joint
- Results

FTP-friendly compression

Recall from the challenge 1, the compression efficiency of the unary spikes is low.

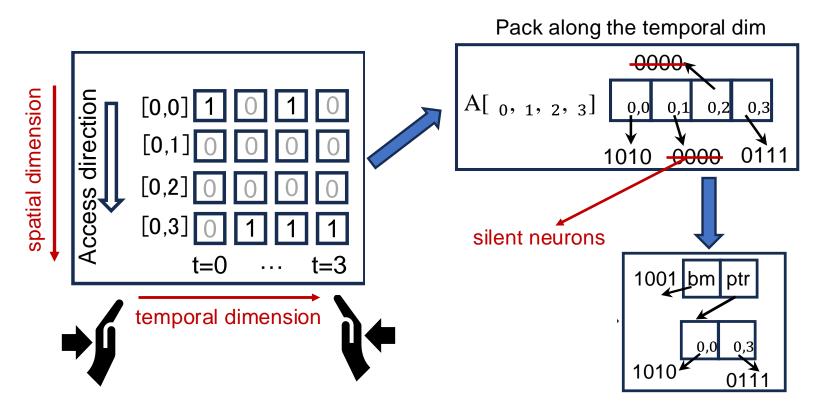
The intuition here is that position index can only encodes the data at **spatial location**.



Each **spatial location** only contains **1-bit information** for each timestep.

FTP-friendly compression

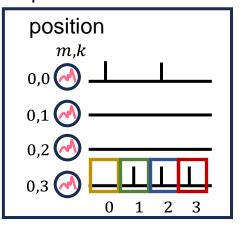
Fortunately, data on different temporal dimension shares the same spatial location.

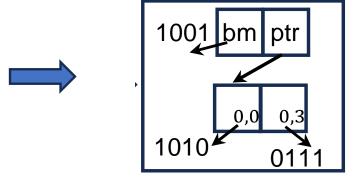


Only store the compressed non-silent neurons

FTP-friendly compression

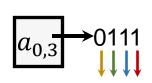
Input Neuron Behavior

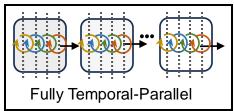




Benefit 1: better compression efficiency (8/4=2)

Benefit 2: Contiguous memory access for FTP dataflow



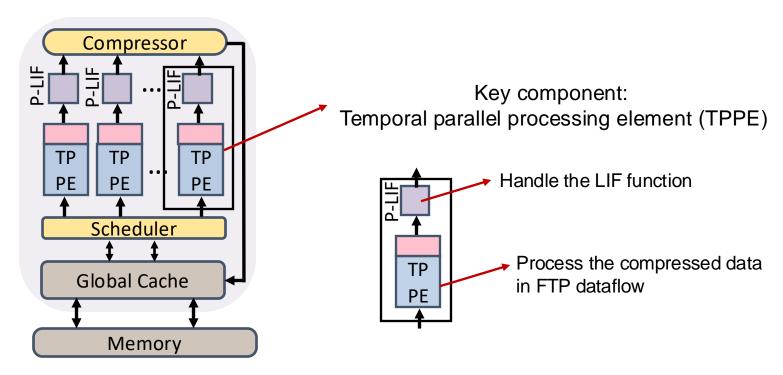


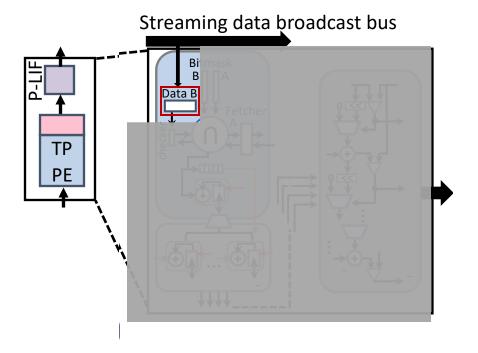
for m in [0,M-1]
 for n in [0,N-1]
 for k in [0,K-1]
 parallel-for t in [0,T-1]

Contents

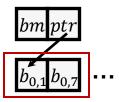
- Motivation of accelerating dual-sparse SNNs
- Challenges of accelerating dual-sparse SNNs
- FTP (fully temporal-parallel) dataflow
- FTP-friendly compression
- LoAS and SNN-friendly inner-joint
- Results

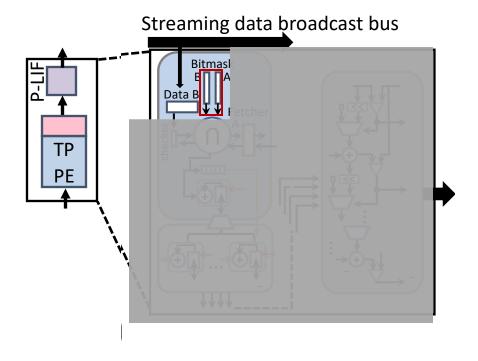
To encapsulate both the FTP dataflow and FTP-friendly compression, we design LoAS (**Lo**w-latency inference **A**ccelerator for dual-sparse **S**NNs.)





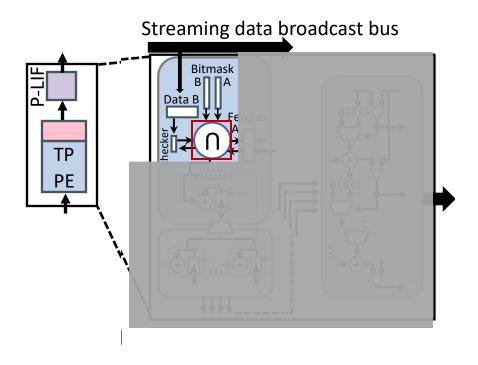
Data B is sent in as the compressed form:



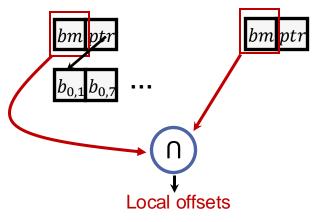


A and B's bitmasks are also sent.

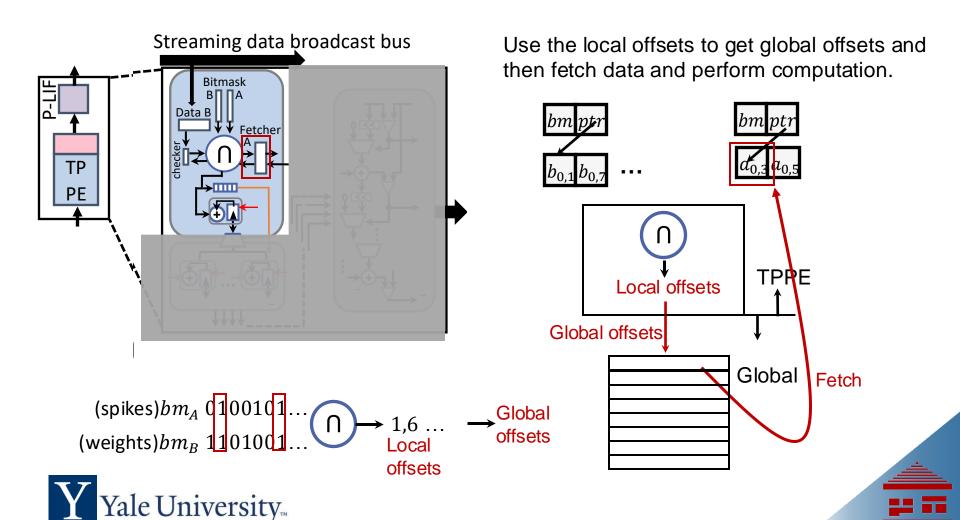
(spikes) bm_A 0100101... (weights) bm_B 1101001...

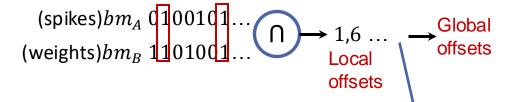


Bitmasks are sent through the inner-join unit

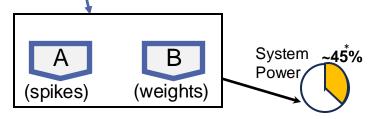


(spikes) bm_A 0100101... \bigcirc 1,6 ... (weights) bm_B 1101001... \bigcirc Local offsets

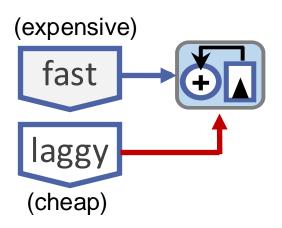




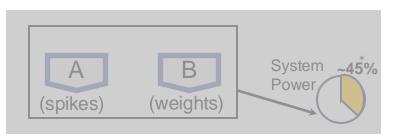
To get the global offsets, we need expensive prefix sum circuits for each operands.

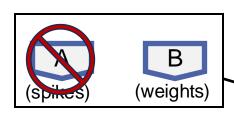


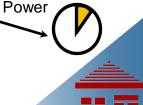
We propose an SNN-friendly inner-join units with a combination of fast prefix sum (for B) and laggy prefix sum (for A).



Intuition: preemptively decode and accumulate B using the fast prefix sum, then later make corrections on pre-computed results using the decoded A from the laggy prefix sum.







System ~15%

Contents

- Motivation of accelerating dual-sparse SNNs
- Challenges of accelerating dual-sparse SNNs
- FTP (fully temporal-parallel) dataflow
- FTP-friendly compression
- LoAS and SNN-friendly inner-joint
- Results

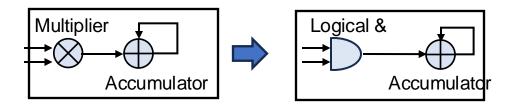
Baselines

Simplify and modify the original ANN spMspM accelerators for running SNNs.

Inner-Product
SparTen MICRO '19

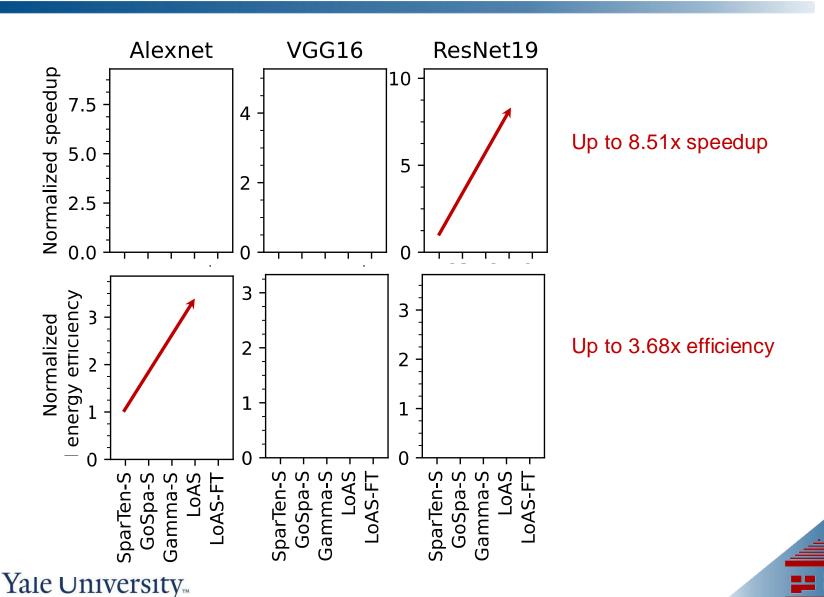
Outer-Product GoSPA ISCA '21

Gustavson's Gamma ASPLOS '21



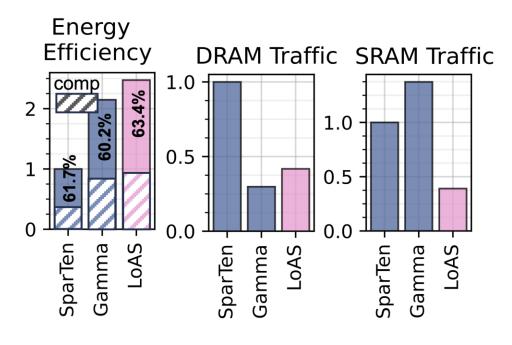
Simplify the MAC units to leverage SNN's unary spikes.

LoAS (T=4) vs. Baselines (T=4)



LoAS (T=4) vs. ANN SparTen (8bit)

Compare to dual-sparse ANNs (VGG16) running on SparTen and Gamma, LoAS achieves on average 1.9x more energy efficiency.

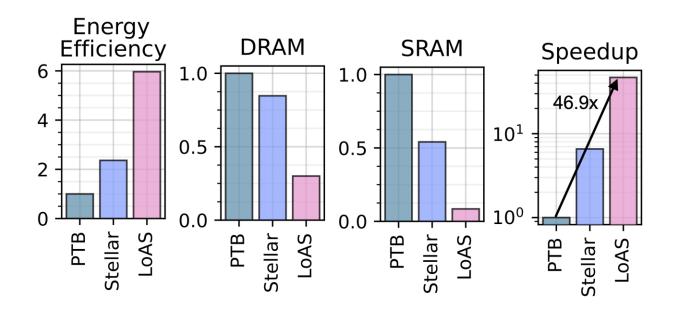


Both SNNs and ANNs have weights in 8-bits

- Mainly due to 1. the higher sparsity in LIF neuron (79%) vs. ReLU (43.9%).
 - 2. the lower input bitwidth (4-bit vs. 8-bit)

LoAS (T=4) vs. dense SNN accelerators

Compared to existing dense SNN accelerators (VGG16), LoAS achieves on average 2.8x more energy efficiency and up to 46.9x speedup.



Mainly due to the leverage of dual-sparsity (less data fetch of weights).

Conclusion

- There lacks prior hardware deployment solutions for dual-sparse SNN workloads (pruned SNNs).
- We explore the dataflow design space for dual-sparse SNNs and propose the fully temporal parallel (FTP) dataflow.
- We further propose an FTP-friendly compression method for unary spikes that ensures the compression efficiency and contiguous memory access for FTP dataflow.
- We encapsulate those techniques in LoAS together with an SNN-friendly innerjoint unit design.
- LoAS is more energy efficient and faster compared to its SNN-like spMspM baselines, ANN spMspM designs, and dense SNN designs.
- We hope this work can start a new round of design space exploration in SNN's spMspM accelerations.

Thank you! Q&A

Code available at: https://github.com/Intelligent-Computing-Lab-Yale/LoAS

Feel free to email me questions!

ruokai.yin@yale.edu

Also here!

