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AI workloads in GPU era
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Power matters!

Smart Drone

~50 W

Adult Hornet

~50 𝜇W

Human Brain

~20 W

There exists a huge gap in terms of the power consumption between 

the artificial intelligence and the nature intelligence.

Nature

Intelligence

Artificial

Intelligence
…

AlphaGo (176 GPUs)

~200 kW

+
Nature-Inspired

Machine 

Intelligence



SNNs as compute-friendly nature machine intelligence

Spiking Neural Networks (SNNs)

Artificial Neural Networks (ANNs)

Power Cost: 1x*

Power Cost: 32x*

ANN input sparsity: ~50%

SNN input sparsity: ~90%
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*Han, Song, et al. "EIE: Efficient inference engine on compressed deep neural network.”, 2016.
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Performance Gap: SNNs vs ANNs
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DINO-V2[2]

Direct

tdBN
SNAS-Net

SDT[3] STAtten[4]

T=8

T=6
T=5

T=4
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[1] Kolesnikov, et al., “Big transfer (bit): General visual representation learning.”, ECCV 2020
[2] Oquab, et al., "Dinov2: Learning robust visual features without supervision.”, TMLR 2024
[3] Yao et al., “Spike-driven Transformer”, NeurIPS 2024

[4] Lee et al., “Spiking Transformer with Spatial-Temporal Attention”, arXiv, 2024



SNN model sizes also grow

ResNet19

(~48 MB)

Transformer (8-768)

(~265 MB~ 300MB)

32-bit SRAM Read (1MB)

32-bit DRAM Read 640x

100x

(SNN)

logical & 
+ accumulation

(ANN)

Multiplication
+ accumulation

Operation Norm Energy*Precision

W – FP32

S – INT1

W – FP32

X – FP32

1x

4.6x

SNN model sizes will keep scaling up ➚

When model sizes grow larger, the data 

movements can become the hurdle.

*Horowitz et al. "1.1 computing's energy problem (and what we can do about it).”, ISSCC 2014.



Compress the SNNs by pruning

Epoch 1

Epoch 2

Epoch 3
…

Epoch N

Epoch 4

Train N epoch + T timestep 

Pruning

Re-initialization

ResNet19

dense: (~48 MB)

0.6 MB

3.6 MB

The resulted weight matrices usually have 

around 95% sparsity.

3.3 MB

[1]

[1] Chen et al., “State transition of dendritic spines improves learning of sparse spiking neural networks.”, ICML 2022.

[2] Kim et al., “Exploring lottery ticket hypothesis in spiking neural networks.”, ECCV 2022.

[2]

[3]

[3] Liu et al., “LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal 

Compressive Network Search and Joint Optimization.”, IJCAI 2024.

2.9 MB

Pruning technique removes the redundant 

synaptic connections during the training.



Accelerating dual-sparse SNNs

Epoch 1

Epoch 2

Epoch 3
…

Epoch N

Epoch 4

Train N epoch + T timestep 

Pruning

Re-initialization

Dual-sparse SNN workloads

Prunned SNN networks

Accelerating the dual-sparse SNNs becomes the 

acceleration of Sparse-matrix-sparse-matrix (spMspM).

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0 

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0 

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0 

0 else

& Acc

LIF

Acc

ReLU

x

LIF-based SNN

ReLU-based ANN Binary data

Unary data

threshold

� � � � � � � �

output: 0010

0

ReLU

output:

x if x>0 

0 else

Output Spikes

Spikes are sparse due to the 

LIF-based activation function.

Weights are sparse due to 

the iterative pruning.
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Where to deploy dual-sparse SNNs?

Sparse weight 

matrix

Dual-sparse SNN workloads

X

Sparse spike 

matrix

VV

Timestep

Where to deploy?

SpinalFlow

(ISCA `20)

PTB

(HPCA `22)

Stellar

(HPCA `24)

Prior SNN accelerators

Spike Sparsity    

Weight Sparsity 

Spike Sparsity    

Weight Sparsity 

Spike Sparsity    

Weight Sparsity 

Efficient at leveraging the spike sparsity.

But not support the weight sparsity.



Where to deploy dual-sparse SNNs?

Sparse weight 

matrix

Dual-sparse SNN workloads

X

Sparse spike 

matrix

VV

Timestep

Where to deploy?

SparTen

MICRO `19

Prior ANN spMspM accelerators?

Input Sparsity     

Weight Sparsity 

Efficient at leveraging dual-sparsity for ANNs.

However, we observe two challenges for 

deploying dual-sparse SNNs.

GoSPA

ISCA `21

Gamma

ASPLOS `21

…



Challenge 1: compression efficiency

Input 
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Challenge 1: compression efficiency

Input 

spikes

Input spike train:  

001011 # of compute: 3

# of weight fetch: 3

# of PE cycles: 6Accumulator
1/0
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Challenge 1: Compression Efficiency

Input 

spikes

Input spike train:  

001011 # of compute: 3

# of weight fetch: 3

# of PE cycles: 6Accumulator
1/0
w

Logical &

weights

Not saving PE cycles!

Accumulator

w

weights

indices

[2,4,5] Match

# of compute: 3

# of weight fetch: 3

# of PE cycles: 3

Input spike train:  

001011

Challenge: compression efficiency for spikes is low!

In this example: 

3x3-bits CSR to compress 3 bits of data

3/9 -> only 0.33 (<1) compression efficiency

We need to compress the 

spikes to save PE cycles.



Challenge 2: Dataflow Design Space

for m in [0,M-1] 
for n in [0,N-1] 
for k in [0,K-1] 

×

N

K

K

M

input weight

Dual-sparse ANN spMspM

Different dataflow is the different permutation of the 3-nested for loops.

for k in [0,K-1] 
for m in [0,M-1] 
for n in [0,N-1] 

for m in [0,K-1] 
for k in [0,M-1] 
for n in [0,N-1] 

Inner-Product Outer-Product Gustavson’s
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Challenge 2: Dataflow Design Space

×

N

K

K

weight

Dual-sparse SNN spMspM

K

M

K

inputs across timesteps
T

This translates to an extra 
temporal loop (t-loop)

for t in [0,T-1] 

Challenge: where to position the t-loop? 
for k in [0,K-1] 
for m in [0,M-1] 
for n in [0,N-1] 

Original 6 permutations

for k in [0,K-1] 
for m in [0,M-1] 
for n in [0,N-1] 

for t in [0,T-1] 

Now 24 possible permutations
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Observations of SNN spMspM dataflow

for m in [0,M-1] 
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Observation 1: t-loop increases the data traffic (weights and outputs) of 

the dimensions below it by T times.*

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1] repeat T times 
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Observations of SNN spMspM dataflow

Inner-Product Outer-Product Gustavson’s

Observation 1: t-loop increases the data traffic (weights and outputs) of 

the dimensions below it by T times.*

for m in [0,M-1] 
for n in [0,N-1] 
for k in [0,K-1] 

for k in [0,K-1] 
for m in [0,M-1] 
for n in [0,N-1] 

for m in [0,K-1] 
for k in [0,M-1] 
for n in [0,N-1] 

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1] 

Solution 1: position t-loop as the innermost loop.



Observations of SNN spMspM dataflow

Inner-Product Outer-Product Gustavson’s

Observation 2: t-loop expands the partial-sums (rows) in original dataflow 

by T times, regardless of the position.

for m in [0,M-1] 
for n in [0,N-1] 
for k in [0,K-1] 

for k in [0,K-1] 
for m in [0,M-1] 
for n in [0,N-1] 

for m in [0,K-1] 
for k in [0,M-1] 
for n in [0,N-1] 

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1] 

T times larger 



Observations of SNN spMspM dataflow

Inner-Product Outer-Product Gustavson’s

Observation 2: t-loop expands the partial-sums (rows) in original dataflow 

by T times, regardless of the position.

for m in [0,M-1] 
for n in [0,N-1] 
for k in [0,K-1] 

for k in [0,K-1] 
for m in [0,M-1] 
for n in [0,N-1] 

for m in [0,K-1] 
for k in [0,M-1] 
for n in [0,N-1] 

for t in [0,T-1] for t in [0,T-1] for t in [0,T-1] 

Solution 2: reduce the partial sums as early as possible (put k-loop as 

second inner).



FTP dataflow

Fully temporal-parallel dataflow

We further spatially unroll the t-loop. This removes the latency penalty 

with the minimal hardware instances duplication.

for m in [0,M-1] 
for n in [0,N-1] 
for k in [0,K-1] 
parallel-for t in [0,T-1] 

PTB

(HPCA `22)

…

Partially Temporal-Parallel

…
≈

Fully Temporal-Parallel

Ours

SpinalFlow

(ISCA `20)

…

Temporal Sequential 

dual-sparse SNN

Layer 1 Layer 2 Layer N

…

Tick-Batch Temporal-Sequential

t0
t1

t2
t3
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FTP-friendly compression

Recall from the challenge 1, the compression efficiency of the unary spikes is low.

The intuition here is that position index can only encodes the data at spatial 

location.
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Each spatial location only contains 

1-bit information for each timestep.



FTP-friendly compression

Fortunately, data on different temporal dimension shares the same spatial location.
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FTP-friendly compression
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Benefit 1: better compression efficiency (8/4=2)

Benefit 2: Contiguous memory access for FTP dataflow
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…
≈

Fully Temporal-Parallel

for m in [0,M-1] 
for n in [0,N-1] 
for k in [0,K-1] 
parallel-for t in [0,T-1] 
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LoAS

To encapsulate both the FTP dataflow and FTP-friendly compression, we 

design LoAS (Low-latency inference Accelerator for dual-sparse SNNs.)
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Temporal parallel processing element (TPPE)
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IF Handle the LIF function

Process the compressed data 

in FTP dataflow



LoAS
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Data B is sent in as the compressed form:
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…
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A and B’s bitmasks are also sent.
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LoAS
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Bitmasks are sent through the inner-join unit
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Use the local offsets to get global offsets and 

then fetch data and perform computation.
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LoAS

* "SparTen: A sparse tensor accelerator for convolutional neural networks."MICRO ‘19
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To get the global offsets, we need expensive prefix sum circuits for each 

operands.
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~45%System
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LoAS

Intuition:  preemptively decode and 

accumulate B using the fast prefix sum, then 

later make corrections on pre-computed results 

using the decoded A from the laggy prefix sum.
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Contents

• Motivation of accelerating dual-sparse SNNs

• Challenges of accelerating dual-sparse SNNs

• FTP (fully temporal-parallel) dataflow

• FTP-friendly compression

• LoAS and SNN-friendly inner-joint

• Results



Baselines

Inner-Product

SparTen MICRO ’19

Outer-Product

GoSPA ISCA ‘21

Gustavson’s

Gamma ASPLOS ‘21

Accumulator

Multiplier

Accumulator

Logical &

Simplify and modify the original ANN spMspM accelerators for running SNNs.

Simplify the MAC units to leverage SNN’s unary spikes.



LoAS (T=4) vs. Baselines (T=4)

Up to 8.51x speedup

Up to 3.68x efficiency



LoAS (T=4) vs. ANN SparTen (8bit)

Compare to dual-sparse ANNs (VGG16) running on SparTen and Gamma, 

LoAS achieves on average 1.9x more energy efficiency.

Mainly due to  1. the higher sparsity in LIF neuron (79%) vs. ReLU (43.9%). 

         2. the lower input bitwidth (4-bit vs. 8-bit)

Both SNNs and 

ANNs have weights 

in 8-bits



LoAS (T=4) vs. dense SNN accelerators

Compared to existing dense SNN accelerators (VGG16), LoAS achieves on 

average 2.8x more energy efficiency and up to 46.9x speedup.

Mainly due to the leverage of dual-sparsity (less data fetch of weights).



Conclusion

• There lacks prior hardware deployment solutions for dual-sparse SNN workloads 

(pruned SNNs).

• We explore the dataflow design space for dual-sparse SNNs and propose the fully 

temporal parallel (FTP) dataflow.

• We further propose an FTP-friendly compression method for unary spikes that 

ensures the compression efficiency and contiguous memory access for FTP 

dataflow.

• We encapsulate those techniques in LoAS together with an SNN-friendly inner-

joint unit design.

• LoAS is more energy efficient and faster compared to its SNN-like spMspM 

baselines, ANN spMspM designs, and dense SNN designs.

• We hope this work can start a new round of design space exploration in SNN’s 

spMspM accelerations.



Thank you! Q&A

Code available at: https://github.com/Intelligent-Computing-Lab-Yale/LoAS

Also here!

Feel free to email me questions!

ruokai.yin@yale.edu

https://github.com/Intelligent-Computing-Lab-Yale/LoAS
mailto:ruokai.yin@yale.edu
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