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Fig. 1: A timeline of  existing large language models (>10 B) in recent years [1].

- Emergence of Large Language Models (LLMs)

- Inference serving accounts for most LLM-based application scenarios. Accelerating LLM    
  inference has become an increasingly important research problem.
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Fig. 2: Autoregressive inference of LLMs Fig. 3: KV Caching Mechanism [2].

- Transformer Architecture
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- LLM Inference with KV Caching

Original Attention Computation 𝑂 𝑛!  

Attention Computation 𝑂 𝑛  

KV Memory Access 𝑂 𝑛  
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Quadratic Complexity
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Fig. 4: Execution time and memory comparison for OPT-6.7B.

- KV caching increases memory overhead
𝐾𝑉	𝑇𝑒𝑛𝑠𝑜𝑟	𝑆𝑖𝑧𝑒 = 𝐵 0 ℎ 0 𝑛

- For small LLMs, the KV tensor size for one token is 
around dozens of MB; for larger models, the size can 
be as big as dozens of GB

- The memory footprint of KV tensors can be a 
potential problem when serving large models or 
generating long (1k+) sequences

< 1GB
~30 GB

>300 GB

1B Model 13B Model 175B Model



Motivation

4

- Optimizing KV Caching (Previous works)

- FlexGen [3]: Utilize CPU DRAM, and 
secondary storage (SSD) to hold the 
intermediate KV tensors and model weights

- vLLM [4]: Employ non-contiguous paged memory 
to store KV tensors at block-level, where each block 
contains a fixed group of tokens to reduce memory 
fragmentation 

- Other Works for accelerating LLM inference:
- Attention computation acceleration [5,6], pruning [7,8] (Algorithm)
- Hardware acceleration [9,10] (Accelerator co-design)
- Quantization [11,12] 

Cannot scale to large LLMs

Focus on model weight reduction
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Frequent offloading/reloading incurs significant I/O latency, creating new bottleneck for LLM inference 

Fig. 5: Execution breakdown of OPT-6.7B in a single NVIDIA V100 (32GB) GPU. 
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How do we innovate KV caching to alleviate I/O bottleneck of LLM inference?

Key Observation: Not all tokens are created equal!

Fig. 6: Attention sparsity observed across different steps and layers of OPT
model inference. 

Fig. 7: Attention weight distribution for OPT-6.7B. 

Assume 𝐴"!	is close to zero, we have 𝐴 =
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Attn" 𝑄,𝐾, 𝑉 ≈ 𝐴"#𝑉#+ 𝐴"$𝑉$+ 𝐴""𝑉"
Therefore, we do not need to calculate 𝐴"!, and do not need KV tensors for the second token 
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How do we leverage sparsity for KV caching?

1. Identifying important tokens (Algorithm): we need a low-cost mechanism to distinguish 
important tokens without hurting LLM accuracy

2. Sparsity-aware Caching Policy (System): when GPU cannot hold all the KV tensors, we 
need to design a suitable low-overhead caching policy to allocate KV tensors between 
CPU and GPU and ensure a low miss rate; 

3. Caching vs. Recomputation (System): for longer sequences, the benefits of KV caching 
diminishes, we need to consider recomputation of partial KV tensors instead of caching.
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Sparse Window Attention (SWA):

- Global Dynamic Sparse Patterns: determined by local attention weight sum (light orange color)

- Local Static Sparse Patterns : determined by recency (dark orange color)

SWA Generated Patterns
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Fig. 8: Comparison of different attention methods. Top row illustrates the attention patterns, and the bottom row 

compares the final attention score distribution

(a) Dense Attention (b) Local Attention [7] (c) Strided Attention [8] (d) SWA (Ours)
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Three-phase Dynamic Scheduling:
We divide the LLM inference into three phases to balance the caching and Recomputation

- Phase I: GPU Caching. All KV tensors can fit in GPU memory.

- Phase II: GPU-CPU Caching. Split KV tensors at token-level on both GPU and CPU.

- Phase III: Caching-Recomputation. Delete partial KV tensors and perform recomputation instead if 
needed
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How do we determine the phase switch step and offload/recomputation ratio?

We formulate this question into an optimization problem to 
minimize total execution time.

- Size of KV tensors: 4 0 𝑏 0 𝑙 0 ℎ
- Number of tokens moved from GPU to CPU: 𝜃01 = 𝛼 𝑗 + 𝑠
- Number of tokens moved from GPU to CPU: 𝜃21

For each step, the execution time is:

𝑇!"(𝛼) =
4 ' 𝑏 ' 𝑙 ' ℎ ' (𝜃!# + 𝜃$#)

𝐵
The total execution time is:
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- Divide the problem into two sub-problems, 
including an I/O problem and a computation 
problem.
- For I/O problem, we can use greedy search
- For computation, we can use profiling

Solution:
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Sparse Window 
Attention (SWA)

- KV Compression (quantizing FP16 KV tensors to INT8)

Table I: Comparison of our ALISA and prior works.

Dynamic
Scheduling

KV
Compression

Additional System Optimization

ALISA 
(Co-design)
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Experimental Settings:

- Models: OPT (6.7B, 13B, 30B), LLaMA (7B, 13B, 33B), Pythia (6.9B, 12B)

- Algorithm Baselines: Dense attention, Local attention [7], Strided attention [8]

- System Baselines: DeepSpeed [13], Accelerate [14], FlexGen [3], vLLM [4]

- Datasets: Alpaca, Penn Treebank, Wiki-Text-2 (language modeling)
                  OpenBookQA, PIQA, COPA, WinoGrande (question answering)

- Metrics: Perplexity, Accuracy (Algorithm), Throughput (system)

- Hardware Platforms: V100 16/32 GB, H100 80 GB, 128 GB DRAM (single GPU-CPU sys)
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1. ALISA consistently outperforms local 
and strided attention across different 
model types and scales

2. ALISA can maintain identical 
performance as dense attention to up 
to 80% KV sparsity

3. KV compression has almost no effect 
on accuracy

Full results can be found in the paper
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1. Compared to FlexGen, ALISA achieves 1.4~3.0× throughput improvement, showing much better 
scalability across different model sizes and batch sizes

2. Compared to vLLM, under large batch sizes, ALISA can sustain up to 1.9× higher throughput



Performance Analysis

16

Attainable Sparsity Kernel-level Breakdown

1. KV Sparsity increases the sparsity by creating sparse KV 
tensors, which is close to dense attention

2. There exists compute under-utilization in SWA 
calculation, but the overall overhead is relatively small 
against dense attention
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LLM Inference Breakdown

1. ALISA improves upon FlexGen 
across different phases

2. With higher KV sparsity, the 
speedup of ALISA over FlexGen 
is more significant

3. ALISA makes better use of the 
GPU memory
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Ablation Study

- Impact of Recomputation - Impact of each technique
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- We identify the challenges in KV caching for LLM inference and propose an algorithm-
system co-design solution, ALISA, for efficient LLM inference
 
- On the algorithm level, we propose sparse window attention (SWA) that creates a mixture of 
globally dynamic and locally static sparse patterns in KV tensors to reduce the memory 
footprint while maintaining high accuracy.

- On the system level, we design a three-phase scheduler to dynamically allocate KV tensors 
between GPU and CPU memory to reduce data transfer at the token level.

- Extensive experiments demonstrate that ALISA can significantly reduce the memory 
footprint of KV tensors and increase the throughput over previous baselines, with negligible 
accuracy drop
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