
ALISA: Accelerating Large Language Model
Inference via Sparsity-aware KV Caching

Youpeng Zhao, Di Wu, Jun Wang

Computer Systems and Data Science (CASS)
Laboratory

University of Central FloridaISCA 2024

Background

1

Fig. 1: A timeline of existing large language models (>10 B) in recent years [1].

- Emergence of Large Language Models (LLMs)

- Inference serving accounts for most LLM-based application scenarios. Accelerating LLM
 inference has become an increasingly important research problem.

Background

2

Fig. 2: Autoregressive inference of LLMs Fig. 3: KV Caching Mechanism [2].

- Transformer Architecture

𝐴𝑊 𝑄,𝐾 = 𝜎
𝑄𝐾!

√𝑑
𝐴𝑡𝑡𝑛 𝑄, 𝐾, 𝑉 = 𝐴𝑊 𝑄,𝐾 - 𝑉

- LLM Inference with KV Caching

Original Attention Computation 𝑂 𝑛!

Attention Computation 𝑂 𝑛

KV Memory Access 𝑂 𝑛
+

Quadratic Complexity

Motivation

3

Fig. 4: Execution time and memory comparison for OPT-6.7B.

- KV caching increases memory overhead
𝐾𝑉	𝑇𝑒𝑛𝑠𝑜𝑟	𝑆𝑖𝑧𝑒 = 𝐵 0 ℎ 0 𝑛

- For small LLMs, the KV tensor size for one token is
around dozens of MB; for larger models, the size can
be as big as dozens of GB

- The memory footprint of KV tensors can be a
potential problem when serving large models or
generating long (1k+) sequences

< 1GB
~30 GB

>300 GB

1B Model 13B Model 175B Model

Motivation

4

- Optimizing KV Caching (Previous works)

- FlexGen [3]: Utilize CPU DRAM, and
secondary storage (SSD) to hold the
intermediate KV tensors and model weights

- vLLM [4]: Employ non-contiguous paged memory
to store KV tensors at block-level, where each block
contains a fixed group of tokens to reduce memory
fragmentation

- Other Works for accelerating LLM inference:
- Attention computation acceleration [5,6], pruning [7,8] (Algorithm)
- Hardware acceleration [9,10] (Accelerator co-design)
- Quantization [11,12]

Cannot scale to large LLMs

Focus on model weight reduction

Main Problem

5
Frequent offloading/reloading incurs significant I/O latency, creating new bottleneck for LLM inference

Fig. 5: Execution breakdown of OPT-6.7B in a single NVIDIA V100 (32GB) GPU.

Proposal

6

How do we innovate KV caching to alleviate I/O bottleneck of LLM inference?

Key Observation: Not all tokens are created equal!

Fig. 6: Attention sparsity observed across different steps and layers of OPT
model inference.

Fig. 7: Attention weight distribution for OPT-6.7B.

Assume 𝐴"!	is close to zero, we have 𝐴 =

𝐴## 0 0 0
𝐴!# 𝐴!! 0 0
𝐴$#
𝐴"#

𝐴$!
𝐴"!

𝐴$$ 0
𝐴"$ 𝐴""

Attn" 𝑄,𝐾, 𝑉 = 𝐴"#𝑉# + 𝐴"!𝑉!+ 𝐴"$𝑉$+ 𝐴""𝑉"

Attn" 𝑄,𝐾, 𝑉 ≈ 𝐴"#𝑉#+ 𝐴"$𝑉$+ 𝐴""𝑉"
Therefore, we do not need to calculate 𝐴"!, and do not need KV tensors for the second token

Proposal

7

How do we leverage sparsity for KV caching?

1. Identifying important tokens (Algorithm): we need a low-cost mechanism to distinguish
important tokens without hurting LLM accuracy

2. Sparsity-aware Caching Policy (System): when GPU cannot hold all the KV tensors, we
need to design a suitable low-overhead caching policy to allocate KV tensors between
CPU and GPU and ensure a low miss rate;

3. Caching vs. Recomputation (System): for longer sequences, the benefits of KV caching
diminishes, we need to consider recomputation of partial KV tensors instead of caching.

Algorithm Design

8

Sparse Window Attention (SWA):

- Global Dynamic Sparse Patterns: determined by local attention weight sum (light orange color)

- Local Static Sparse Patterns : determined by recency (dark orange color)

SWA Generated Patterns

Algorithm Design

9
Fig. 8: Comparison of different attention methods. Top row illustrates the attention patterns, and the bottom row

compares the final attention score distribution

(a) Dense Attention (b) Local Attention [7] (c) Strided Attention [8] (d) SWA (Ours)

System Design

10

Three-phase Dynamic Scheduling:
We divide the LLM inference into three phases to balance the caching and Recomputation

- Phase I: GPU Caching. All KV tensors can fit in GPU memory.

- Phase II: GPU-CPU Caching. Split KV tensors at token-level on both GPU and CPU.

- Phase III: Caching-Recomputation. Delete partial KV tensors and perform recomputation instead if
needed

System Design

11

How do we determine the phase switch step and offload/recomputation ratio?

We formulate this question into an optimization problem to
minimize total execution time.

- Size of KV tensors: 4 0 𝑏 0 𝑙 0 ℎ
- Number of tokens moved from GPU to CPU: 𝜃01 = 𝛼 𝑗 + 𝑠
- Number of tokens moved from GPU to CPU: 𝜃21

For each step, the execution time is:

𝑇!"(𝛼) =
4 ' 𝑏 ' 𝑙 ' ℎ ' (𝜃!# + 𝜃$#)

𝐵
The total execution time is:

min
{&,(,)!,)"}

1
!+,

)"

𝑇!# + 1
!+)!

)"

𝑇!"(𝛼) + 1
!+)"

-

𝑇!.(𝛽)

- Divide the problem into two sub-problems,
including an I/O problem and a computation
problem.
- For I/O problem, we can use greedy search
- For computation, we can use profiling

Solution:

Algorithm-System Co-Design

12

Sparse Window
Attention (SWA)

- KV Compression (quantizing FP16 KV tensors to INT8)

Table I: Comparison of our ALISA and prior works.

Dynamic
Scheduling

KV
Compression

Additional System Optimization

ALISA
(Co-design)

Evaluation

13

Experimental Settings:

- Models: OPT (6.7B, 13B, 30B), LLaMA (7B, 13B, 33B), Pythia (6.9B, 12B)

- Algorithm Baselines: Dense attention, Local attention [7], Strided attention [8]

- System Baselines: DeepSpeed [13], Accelerate [14], FlexGen [3], vLLM [4]

- Datasets: Alpaca, Penn Treebank, Wiki-Text-2 (language modeling)
 OpenBookQA, PIQA, COPA, WinoGrande (question answering)

- Metrics: Perplexity, Accuracy (Algorithm), Throughput (system)

- Hardware Platforms: V100 16/32 GB, H100 80 GB, 128 GB DRAM (single GPU-CPU sys)

Algorithm Results

14

1. ALISA consistently outperforms local
and strided attention across different
model types and scales

2. ALISA can maintain identical
performance as dense attention to up
to 80% KV sparsity

3. KV compression has almost no effect
on accuracy

Full results can be found in the paper

System Results

15

1. Compared to FlexGen, ALISA achieves 1.4~3.0× throughput improvement, showing much better
scalability across different model sizes and batch sizes

2. Compared to vLLM, under large batch sizes, ALISA can sustain up to 1.9× higher throughput

Performance Analysis

16

Attainable Sparsity Kernel-level Breakdown

1. KV Sparsity increases the sparsity by creating sparse KV
tensors, which is close to dense attention

2. There exists compute under-utilization in SWA
calculation, but the overall overhead is relatively small
against dense attention

Performance Analysis

17

LLM Inference Breakdown

1. ALISA improves upon FlexGen
across different phases

2. With higher KV sparsity, the
speedup of ALISA over FlexGen
is more significant

3. ALISA makes better use of the
GPU memory

Performance Analysis

18

Ablation Study

- Impact of Recomputation - Impact of each technique

Conclusion

19

- We identify the challenges in KV caching for LLM inference and propose an algorithm-
system co-design solution, ALISA, for efficient LLM inference

- On the algorithm level, we propose sparse window attention (SWA) that creates a mixture of
globally dynamic and locally static sparse patterns in KV tensors to reduce the memory
footprint while maintaining high accuracy.

- On the system level, we design a three-phase scheduler to dynamically allocate KV tensors
between GPU and CPU memory to reduce data transfer at the token level.

- Extensive experiments demonstrate that ALISA can significantly reduce the memory
footprint of KV tensors and increase the throughput over previous baselines, with negligible
accuracy drop

References
[1] B. Wang. Timeline of Open and Proprietary Large Language Models.
[2] M. Ott, et al. “Fairseq: A fast, extensible toolkit for sequence modeling,” NACCL, 2019.
[3] Y. Sheng, et al. “High-throughput generative inference of large language models with a single gpu,” ICML 2023.
[4] W. Kwon, et al. “Efficient memory management for large language model serving with pagedattention,” SOSP,
2023.
[5] N. Kitaev , et al. “Reformer: The efficient transformer,” ICLR,.
[6] S. Wang, et al. “Linformer: Selfattention with linear complexity,” ArXiv, 2020.
[7] I. Beltagy, et al. “Longformer: The long document transformer,” ArXiv, 2020.
[8] R. Child, et al. “Generating long sequences with sparse transformers,” ArXiv, 2019.
[9] H. Wang, et al. “Spatten: Efficient sparse attention architecture with cascade token and head pruning,” HPCA,
 2020.
[10] J. Dass, et al. “Vitality: Unifying low-rank and sparse approximation for vision transformer acceleration with a
 linear taylor attention,” HPCA, 2022.
[11] J. Lin , et al. “Awq: Activation-aware weight quantization for llm compression and acceleration,” ArXiv, 2023.
[12] E. Frantar, et al, “Gptq: Accurate post-training quantization for generative pre-trained transformers,” ICLR, 2023.
[13] R. Y. Aminabadi, et al. “Deepspeedinference: Enabling efficient inference of transformer models at unprecedented
 scale,” SC, 2022.
[14] T. Wolf , et al. “Huggingface’s transformers: State-of-the-art natural language processing,” ArXiv, 2019.

20

https://www.nextbigfuture.com/2023/04/timeline-of-open-and-proprietary-large-language-models.html

7

• We appreciate the generous support from National Science
Foundation 1907765, and 2400014.

• Faculty and Student Investigators from the UCF Computer
Systems and Data Science Laboratory

• Mr. Youpeng Zhao
• Dr. Di Wu
• Many others…

Acknowledgements

