SECO: A Scalable Accuracy Approximate Exponential **Function via Cross-Layer Optimization**

ISLPED 2019 Lausanne, Switzerland | July 31

Problem Statement

- Power-hungry and area-demanding multiplication and division operations
- In signal processing and spiking neural networks, exponentiation is a key operation
- Typically, exponentiation has no hardware support, but implemented instead in a math software library

Proposed Solution

- In this experiment, we exploit the Taylor Series approximation of exponents to provide a fast, energy efficient exponential functional unit (EFU)
- Replace multiplication and division within the exponent operation with the **shift** operation

Taylor Series Expansion

Cross-Layer Optimization IV

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad \approx \quad \sum_{n=0}^{N} s_n \cdot \frac{x^{p_n}}{2^{q_n}}$$

Increase or decrease the number of terms within the expansion for the operand $x \in [0, 1)$

• The approximation is **initially centered around x = 0** for $x \approx but$ then switches to be **centered around x = 1** for $x \approx 1$

Accuracy

$$s_n \cdot \frac{x^n}{n!} \approx s_n \cdot \frac{x^{p_n}}{2^{q_n}}$$

- Algorithm-level optimization by optimizing the four design parameters, p_n, q_n, s_n, T
- Circuit-level optimization by finding the best approximate multiplier (EvoApproxLib)
- Parameters optimized by minimizing weighted mean relative error (WMRE)

V **Design Flow**

Input

distribution

Bit width

VI Hardware Implementation

Approximate

multiplier lib.

VII **Energy-Accuracy Evaluation**

Adaptive Exponential Neuron Case Study VIII

Input	Optimal Parameters	
Distribution		
U(0,1)	{ p _n }	0, 1, 2, 3, 4, 5, 5
	{s _n }, {q _n }	0, 0, 1, 2, -3, 4, 5
	Т	0.875 Multiplier mul12u_2QN
N(0.75, 0.1)	{ p _n }	0, 1, 2, 3, 4, 4, 4
	{s _n }, {q _n }	0, 0, 1, 3, -4, 5, -6, 7
	Τ	0.375 Multiplier mul12u_2PM

Time error

Value error

IX Conclusion

- Negligible accuracy loss with a significant drop in power, area, and **latency**
- Accuracy drop from 99.997% (baseline design) to 99.7% while saving 96% energy, 94.5% area, and 82.5% latency
- Cross-layer optimization framework for SECO generalizable to other designs

Evaluated the algorithm and design's efficacy on Adaptive **Exponential Neuron**