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Abstract—With the advance of Artificial Neural Networks,
GEMM has become a dominant arithmetic operation in compute-
intensive applications. Multipliers contribute to a major portion
of area and power consumed by conventional systems. This
work proposes T-MAC to improve the power and area efficiency
of machine learning accelerators by exploiting a new dimen-
sion of computation reuse empowered by Hybrid Unary-Binary
computing paradigm. Leveraging the seamless binary interface
and internal unary computing kernel, T-MAC achieves higher
hardware efficiency and better scalability compared against
conventional binary hardware.

I. INTRODUCTION
Customized machine learning accelerators have gained

tremendous attention in both academia and industry. Prior
works have well explored the architecture design space of
binary design, with representative microarchitectures such as
systolic array [1], SIMD [2], [3]. In the field of digital signal
processing, prior works [4], [5] have also explored bit-serial
architectures for machine learning accelerators. At another end
of the spectrum, there are also works purposing fully streaming
unary computing architectures (FSU) [6], with the most well-
known sub-field being stochastic computing [7]–[12].

In this work, we purpose T-MAC, a high-efficiency Hybrid
Unary-Binary (HUB) [13] architecture, which is essentially a
look-up table using temporal signals to perform multiplication.
Thanks to the unary computing paradigm, the hardware can be
trimmed to be extremely simple and compact thus achieving
high compute density and hardware efficiency. The bandwidth
requirement of unary designs is naturally low because unary
computing incurs an exponential latency penalty, which can be
amortized by upscaling the compute array dimension. We ex-
pect that T-MAC to have better scalability under similar mem-
ory pressure. Moreover, since T-MAC operates upon temporal
bitstreams, it is capable of early terminating at arbitrary cycles
with deterministic accuracy loss. This property calls for careful
application co-design to amplify the performance gain. With
the specific hardware architecture in mind, we recognize that
the way to program the hardware has a nontrivial performance
impact. With naive programming, the performance gain could
be severely diluted or even hurt performance [14]. Therefore
we aim to co-design the dataflow with hardware.

II. BACKGROUND
A. Fully Streaming Unary Computing Architecture

Prior works have proposed architectures fully based on
bitstream computing [13]. The two most common bitstream

computing paradigms are temporal [15] and stochastic com-
puting [7]. In both works, the binary number with bit-width
N is converted to its bitstream representation with length
2N and exploits the opportunity of using hardware with
low area footprint and power to perform various operations.
The systematic view of unified bitstream computing scheme
for both stochastic and temporal has also been studied in
[16], where the set of computing kernels for both computing
paradigms are extended to include addition and multiplication
with higher accuracy.

B. Hybrid Unary-Binary Architecture

The closest resemblance of our proposed processing element
architecture is the Hybrid Unary-Binary architectures [6], [8],
[13], where the computation is done in both binary regime and
bit-stream regime. For example, authors in [8] propose to only
perform multiplication in stochastic computing, and addition is
still performed in binary. Authors in [6] purposes partitioning
the binary numbers into sub-blocks and performing unary
computation on the shorter bit-streams to amortize the long
latency. Authors in [13] propose using binary interface as T-
MAC but internally weights are rate coded, whereas in T-
MAC, weights are binary.

C. Bit-Serial Architecture

Prior works have also proposed bit-serial architectures [4],
[5], [17], where the MSBs proceed through the computa-
tion pipeline before the LSBs, achieving flexible bit-width
computation with a linear increase in latency but greater
throughput. Bit-serial architectures do not support seamless
early termination as the unary computing architectures.

III. SOLUTION
A. Architecture

The proposed T-MAC, shown in Fig. 1, adopts a binary
interface but converts inputs to temporal coding to look up the
accumulator (ACC) value as the product. The accumulator for
each weight is shared by all the inputs, denoted by temporal
sharing degree, therefore achieving a smaller compute unit
area for high efficiency. T-MAC processes multiple weights
in parallel, denoted by weight parallel degree. Fig. 1 shows
the T-MAC architecture with temporal sharing degree of i and
weight parallel degree of w.

Inputs (Ii) and weights (Ww) are both stored as binary
data. Each N -bit input is fed into a temporal converter (TC)



I1 TC

ACC

W1

I2 TC P1,2

I3 TC

...

Ii TC
CNT

IBinary

ITemporal

P1,1

P1,3

P1,i

ACC

W2

P2,2

...

P2,1

P2,3

P2,i

ACC

Ww

Pw,2

...

Pw,1

Pw,3

Pw,i

...

CMP

Fig. 1: T-MAC hardware. Adder tree for flexible dataflow is
not shown for clarity. Thick arrows denote binary data and
thin arrows denote unary bitstreams. Temporal bitstreams are
shared across a row horizontally.

which converts input to a temporal bitstream of length 2N by
comparing the input value against a counter. The output of TC
acts as the write enable signal of a product register (P ). The
input data to the product register is the output of a weight
accumulator, which accumulates the binary weight value in
every cycle. At the end of cycle 2N , the product register Pi,w

contains the value of Ii ×Ww. Therefore, T-MAC calculates
the outer product on input and weight vectors.

B. Dataflow

To support clean compute tiling, we purpose output-
stationary dataflow for T-MAC. As is shown in Fig. 2a,
for N -bit inputs, in every 2N cycles, T-MAC computes the
outer product of an input vector I and a weight vector W
and generate an output matrix O. The computation of 2d
convolution, shown in 2b, can be represented as a single matrix
multiplication shown in Fig 2c. The product of kernel size and
channel, i.e. R × S × C, is mapped to temporal dimension.
The product accumulation is done temporally.

The purposed output stationary dataflow reads inputs and
weights every 2N cycles and writes final output to memory
every R×S ×C × 2N cycles, significantly reducing memory
bandwidth pressure, compared against conventional binary
designs. Further optimizations can be applied to reduce the
latency overhead by splitting the workload between several
T-MACs with spatial accumulation among them.

IV. EVALUATION METHODOLOGY

We aim to develop an architecture simulation framework for
performance evaluation. We sample the design space and feed
configuration of workload, memory, schedule, and compute to
the simulator. We leverage the existing UnarySim bitstream
simulator [16] to perform accuracy profiling on the targeted
workload. We generate ideal SRAM traces for the target
dataflow and profile the trace to retrieve the bandwidth and
latency in a memory contention-aware manner. Lastly, we
synthesize the hardware RTL and model the memory using
CACTI [18] to evaluate hardware energy and power efficiency.
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Fig. 2: Dataflow. a) Abstract hardware interface. b) Conv2d
representation. c) Output stationary matmul representation. R
and S represent filter width and height; W, H represent input
width and height; P, Q represent output width and height; C
and K represent input and output channel. Dataflow for fully
connected is a special case of Conv2d where R, S, H, W, P,
Q are set to 1.
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Fig. 3: Evaluation framework

V. RELATED WORK

One of the bit-serial architectures that closely relate to our
idea is the Pragmatic architecture [4]. To replace the costly
binary multiplications, Pragmatic applies multi-cycle (linear)
shifting operations, whereas T-MAC is unary (exponential).
One upside of Pragmatic is that the accumulators for accumu-
lating the shifted outputs, related to a single multiplication,
can be also used as accumulators for partial sum, related
to data scheduling. However, these accumulators cannot be
shared, leading to a higher hardware cost. Authors in [6]
purpose using HUB computing by converting binary data into
parallel unary bitstreams, instead of serial bitstreams in T-
MAC, posing exponential area and power overheads. However,
it is limited to performing computations with a single input.
T-MAC outperforms it by supporting 2-input multiplication.
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