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Abstract—Quantum error correction (QEC) via error decod-

ing is essential towards fault-tolerant quantum computing, but

extremely costly to simulate. However, existing simulators are

often CPU-based and suffer from severe performance bottlenecks,

especially when scaling to extensive simulations with large code

distances or low physical error rate. In this work, we introduce

Syndrilla, a PyTorch-based across-platform QEC simulation

framework. The framework is highly modular, allowing flexible

integration and customization of the error model, syndrome

model, decoding configuration (algorithm and data format), and

logical check type. Experimental results show that Syndrilla
achieves 10→ ↑ 20→ speedup over CPU, when running on both

AMD and NVIDIA GPUs, and decoding data format does not

degrade accuracy, demonstrating the practicality and efficiency

of Syndrilla to instigate future QEC research.

Index Terms—Quantum error correction, decoding simulation,

PyTorch, GPU

I. INTRODUCTION

Fault-tolerant quantum computing (FTQC) is on the hori-
zon, given the rampaging investigation in quantum error cor-
rection (QEC). Given the advancement in lowering physical
qubit errors, QEC is poised to eliminate quantum noises at the
logical qubit level, unleashing the exponential computational
power. During the transition from the Noisy Intermediate-
Scale Quantum (NISQ) to FTQC era, quantum error suppres-
sion and mitigation techniques also play a key role. While
algorithm-focused toolchains such as Qiskit have matured, a
significant gap remains on the QEC side: There is a lack of
easy-to-use open-source simulators specifically designed for
QEC. The performance of existing CPU-based systems be-
comes a major bottleneck when scaling to large code distances
or low physical error rates, limiting their practical utility in
research and development.

To address this performance bottleneck, we propose to ac-
celerate QEC simulation via the mature hardware and software
stacks of artificial intelligence, which have been optimized for
decades. In this paper, we develop Syndrilla, A PyTorch-based
numerical simulator for decoders in QEC. Syndrilla is highly
modular, allowing on-demand and independent customization
of its modules, including error, syndrome, decoder, logical
check, and metric. Backed by PyTorch, Syndrilla is capable
of running on any platform that supports PyTorch, such as
CPU, GPU, or even AI accelerators. Compared to CPU-based
simulators, Syndrilla achieves up to 10→↑20→ speedup when
using high-performance GPUs from different vendors, such as
AMD and NVIDIA, and large code distances.
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Fig. 1: Syndrilla framework overview.

II. BACKGROUND

A. BPOSD Algorithm
Belief propagation (BP) exhibits outstanding performance

in classical LDPC codes. However, BP fails to converge in
QEC due to quantum degeneracy, where many distinct physical
error patterns are logically equivalent under the stabilizer for-
malism. To address this, Ordered Statistics Decoding (OSD) is
introduced as a post-processing step. BPOSD achieves robust
performance across a wide range of QEC code families [1].

B. Existing QEC Frameworks
Existing decoders, like BPOSD [1], union-find [2], and

minimum-weight perfect matching [3], are available but lim-
ited in usability and efficiency, since they require ad-hoc
setup and run slowly on CPU. Other simulators, like Google’s
qsim [4] and Stim [5], remain grounded in quantum-circuit
simulation, rather than decoding numerical errors in QEC.

III. FRAMEWORK

The full QEC decoding process can be separated into four
stages: data encoding, syndrome measurement, error decoding,
and error correction. Syndrilla focuses on the process from
encoding to error decoding, leaving out the error correction,
which happens on the physical quantum machines. Syndrilla
virtualizes these concerned stages into five modules: error,
syndrome, decoder, logical check, and metric, as shown in Fig-
ure 1. Each module allows independent, flexible customization
to enable rapid prototyping of new algorithms. An error budget
is set up, until which the simulation will terminate, since the
exact number of input samples needed to report a stable logical
error rate is indefinite beforehand. Syndrilla can also resume
the simulation from checkpoints, if the error budget is not met
in the last run.
Error module. In practical quantum systems, the error char-
acteristics vary drastically across qubit technologies and hard-
ware implementations. The error module injects errors into
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Fig. 2: Comparison across GPUs.
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Fig. 3: Comparison across data formats.

the raw inputs, based on the error model. This module takes
in customized and generates data qubits with target error
distributions. Currently, Syndrilla defaults to binary symmetric
channel (BSC) [1].

Syndrome module. The syndrome module encodes the raw
input with errors into a codeword and measures the corre-
sponding syndrome. The syndrome can also have its own
errors that model the imperfect measurement process. Current
implementation assumes no syndrome measurement errors, but
can easily support models beyond.

Decoder module. The decoder module allows arbitrary com-
binations of different local and global decoding algorithms to
gain the best of both worlds, and currently Syndrilla supports
BP+OSD. This module also configures the data type, e.g,
FP64, during simulation for boosted simulation performance.

Matrix module. The matrix module loads parity check matrix
and logical check matrix into the decoder, and offers flexibility
in how users store these matrices. Currently, we support file
formats of .alist from BPOSD [1], .npz from NumPy, and text.

Logical check module. The logical check module concerns
both X and Z checks for CSS codes, which can be configured
per decoder.

Metric module. Syndrilla includes a dedicated metric module
to output comprehensive evaluation statistics, including run-
time, error rate, decoder invoke rate, etc.

IV. EVALUATION

A. Experimental Setup

In the evaluation, we concern four hardware platforms:
AMD Instinct MI210 GPU, NVIDIA A100 GPU, NVIDIA
H200 GPU, and Intel i9-13900K CPU. We set the batch size
during the simulation to 10000, unless otherwise stated. The
simulation continues until 100 logical errors are reported.
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Fig. 4: Comparison across code distances.
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Fig. 5: Runtime across batch sizes and speedup over CPU.

B. Result Analysis
Figure 2 compares across different GPUs. It is observed

that the simulation accuracy is very consistent across different
GPUs and data formats. However, the runtime of H200 is
significantly lower than that of MI210 and A100, which is
decided by their peak throughput.

Figure 3 zooms into different data formats at different
physical error rates. We conclude that data formats (almost)
have no impact on accuracy, but significantly impact runtime,
with FP16 being the fastest.

Figure 4 shows that different GPUs are consistent in accu-
racy across code distances. Regarding runtime, different GPUs
also exhibit a similar ratio. Due to the sudden decrease of the
logical error rate for distances 7 and 11, their runtime increases
exponentially compared to distance 3.

Figure 5a compares the runtime per input sample across
different batch sizes at a physical error of 0.5. Different GPUs
have varying optimal runtimes, e.g., optimal batch sizes are
213, 212, and 217 for MI210, A100, and H200.

Figure 5b compares the speedup of GPUs over CPU, and
we observe that at large distances, GPUs exhibit significant
speedup over CPU, 10→ ↓ 20→.

V. CONCLUSION

This paper introduces Syndrilla, a highly modular QEC
simulator to speed up decoding by up to 20→ on GPUs.
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