uSystolic: Byte-Crawling Unary Systolic Array

<u>Di Wu</u> and Joshua San Miguel di.wu@ece.wisc.edu and jsanmiguel@wisc.edu

Executive Summary

- ☐ Identify the challenges in existing low-power GEMM architectures based on binary and unary computing.
- ☐ Propose the uSystolic architecture to combine flexible systolic array with low-power unary computing.
- ☐ Evaluate uSystolic in the context of DNNs to reveal its application accuracy and hardware performance.

Outline

- Motivation
- Background
- Architecture
- Evaluation
- Conclusion

- > Core of DNNs
 - Over 90% DNN operations are GEMMs

- Core of DNNs
 - Over 90% operations in DNNs are GEMMs
- > Existing optimizations
 - Programming language and compiler
 - oneDNN, cuBLAS, FBGEMM, etc.

oneAPI Deep Neural Network Library (oneDNN) from Intel

- Core of DNNs
 - Over 90% operations in DNNs are GEMMs
- > Existing optimizations
 - Programming language and compiler
 - oneDNN, cuBLAS, FBGEMM, etc.
 - Architecture and microarchitecture
 - o TPU, BFloat16, etc.

- Challenges on the edge
 - Binary computing is not efficient
 - Mandatory on-chip SRAM
 - systolic TPU, 2-D mesh ShiDianNao, etc.
 - Superquadratic area overhead
 - wire congestion

- Challenges on the edge
 - Binary computing is not efficient
 - Mandatory on-chip SRAM
 - systolic TPU, 2-D mesh ShiDianNao, etc.
 - Superquadratic area overhead
 - wire congestion

Challenges

- Unary computing is not generalizable
 - Fully streaming unary (FSU) architectures
 - full customization

Challenges Input Buffer SR₀₁ SR₁₂ SR₁₂

 $(T_C-1)\times S+K$

Input Reuse Network

- Unary computing is not generalizable
 - Fully streaming unary (FSU) architectures
 - full customization
 - Hybrid unary binary (HUB) architectures
 - low efficiency for matrix multiplication

3D Array of MAC Units

 T_{C}

Compare GEMM architectures

Architecture	Accuracy	Power Efficiency	Scalability	Generalizability
B-Systolic	Precise	Low	High	High
B-Mesh	Precise	Low	Low	High
FSU	Low-High	High	Low	Low
HUB	High	High	Low	Medium
Our goal	High	High	High	High

- Our solution
 - uSystolic: A systolic array with hybrid unary binary computing kernels

Outline

- Motivation
- ☐ Background
- ☐ Architecture
- Evaluation
- Conclusion

Binary systolic array

- Processing element
 - MAC (MUL+ADD)
 - Weight (WREG)
 - Preloaded from top to bottom
 - Input feature map (IREG)
 - Streamed in from left to right
 - Output feature map (OREG)
 - Streamed out from bottom to top

Unary data

- Bitstream
 - Rate coding

Temporal coding

SRC: source binary data

CMP: comparator

RNG: random number generator

CNT: counter

BSG: bitstream generation

Unary multiplier

> uMUL

- Conditional bitstream generation
 - Control the RNG update of one input with another input
 - Rate coding for controllee; Rate or temporal coding for controller

Unary GEMM architecture

- > uGEMM
 - SIMD FSU architecture
 - Spatial reuse with low scalability

Outline

- Motivation
- Background
- ☐ Architecture
- Evaluation
- Conclusion

uSystolic highlight

- uSystolic vs uGEMM
 - Binary accumulation
 - High accuracy
 - Unipolar multiplication on sign-magnitude formatted data
 - Half multiplier area and latency: over 2X improvement in energy efficiency
 - Systolic array with local interconnections
 - Spatial-temporal bitstream reuse: high scalability with no accuracy drop and minimized area overhead
 - Mature data schedule from binary systolic arrays

uSystolic architecture

Systolic array

- Weight: top -> bottom
- Input: left -> right
- Output: bottom -> top

- Leftmost PE
- Non-leftmost PE

Leftmost PE

1: Weight preload

2: Input streaming

4: Output accumulation

Gray: unipolar uMUL, halving the area/latency

Red: binary interface, inheriting data schedule

Non-leftmost PE

1: Weight preload

3: Spatial-temporal bitstream reuse

4: Output accumulation

Gray: unipolar uMUL, halving the area/latency

Red: binary interface, inheriting data schedule

Blue: spatial-temporal bitstream reuse, reducing cost

Cycle 0:

Weight binary is preloaded from top, formatted to sign magnitude, and stays stationary until the GEMM completes.

Cycle 1:

Input binary is streamed from left, formatted to sign magnitude, and stay stationary until the MAC completes.

Cycle 2:

Input bitstream and weight bitstream perform unipolar multiplication.

Cycle 2:

Output bitstream is accumulated and pipelined to the top when the MAC completes.

Cycle 2:

Input bitstream is pipelined to right, together with weight random number.

Cycle 3:

Input bitstream and weight bitstream perform unipolar multiplication.

Cycle 3:

Output bitstream is accumulated and pipelined to the top when the MAC completes.

Spatial-temporal bitstream reuse

Proved high accuracy with conditional BSG $SCC = 0 \cong C\text{-}BSG_r(B_0, R_0)$

Spatial-temporal bitstream reuse

Proved high accuracy with conditional BSG $SCC = 0 \cong C\text{-}BSG_r(B_0, R_0)$

Duplicate B and R with delay

 $C ext{-}BSG_r(B_c,R_c) \implies C ext{-}BSG_r(B_{c+1},R_{c+1})$

Spatial-temporal bitstream reuse

Proved high accuracy with conditional BSG $SCC = 0 \cong C\text{-}BSG_r(B_0, R_0)$

Duplicate B and R with delay

$$C ext{-}BSG_r(B_c,R_c) \implies C ext{-}BSG_r(B_{c+1},R_{c+1})$$

For row PEs, accuracy is consistently high

$$SCC = 0 \cong C\text{-}BSG_r(B_c, R_c)$$

Outline

- Motivation
- Background
- ☐ Architecture
- Evaluation
- Conclusion

Evaluation framework

> Consider both application and hardware

Application accuracy evaluation setup

- UnarySim (ISCA 2020, IEEE Micro Top Pick for 2020)
 - DNN

DNN Model	Dataset	# of weight (M)
4-layer CNN	MNIST	1.2
ResNet18	Cifar10	11.7
AlexNet	ImageNet	61.1

Design

Design	Input resolution	Output resolution	MUL latency
uSystolic	N	N	2^(N-1)
uGEMM-H	N	N	2^N
FXP-i-res	N	2N	1
FXP-o-res	N/2	N	1

Accuracy of DNN inference

4-layer CNN on MNIST (1.2M)

100. Accuracy (%) 98.0 uSystolic/uGEMM-H FXP-i-res FXP-o-res FP32 96.0 6-32 7-64 8-128 9-256 12-2048 FP32 10-512 11-1024

ResNet18 on Cifar10 (11.7M)

100. 60.0 20.0 6-32 7-64 8-128 9-256 10-512 11-1024 12-2048 FP32

AlexNet on ImageNet (61.1M)

60.0 35.0 10.0 6-32 7-64 8-128 9-256 10-512 11-1024 12-2048 FP32

Department of Electrical

UNIVERSITY OF WISCONSIN-MADISON

X axis is (binary resolution)-(cycle count) for uSystolic multiplication

Hardware performance evaluation setup

- uSystolic-Sim
 - DNN: AlexNet and MLPerf
 - Design: systolic array taken from Eyeriss for edge computing
 - 12-by-14 PEs, 192KB SRAM

Design	Input resolution	Output resolution	MUL latency	ACC resolution
uSystolic	8	8	32, 64, 128	24
uGEMM-H	8	8	256	24
Bit parallel	8	16	1	32
Bit serial	8	16	8	32

Bandwidth

White and purple background colors are for designs with/without on-chip SRAM

- uSystolic requires 0.1~1GB/s DRAM bandwidth, even when SRAM is absent
- Eliminating SRAM from uSystolic without idling computing kernel is possible

Area

BP: bit parallel; BS: bit serial; UG: uGEMM-H; UR: uSystolic with rate coding; UT: uSystolic with temporal coding

For 8-bit designs, rate-coded uSystolic without SRAM exhibits 91.3% and 90.7% area reduction compared to binary parallel and binary serial designs with SRAM.

Throughput

- Runtime overhead: 161.8% for bit parallel vs 13.4% for 128 cycle uSystolic
- uSystolic exhibits good throughput scaling, due to low memory contention

Energy

- Early termination in uSystolic reduces the on-chip energy and achieves dynamic accuracy-energy scaling
- Early termination cannot significantly reduce the total energy dominated by DRAM

Efficiency

White and purple background colors are for energy efficiency improvement (E.E.I.) and power efficiency improvement (P.E.I)

 Early termination in uSystolic always increases the on-chip energy efficiency and power efficiency, thanks to the linearly increased throughput.

Outline

- Motivation
- Background
- ☐ Architecture
- Evaluation
- Conclusion

Conclusion

- uSystolic provides
 - High accuracy
 - Binary accumulation
 - Spatial-temporal bitstream reuse
 - High efficiency
 - Unipolar multiplication
 - Spatial-temporal bitstream reuse
 - On-chip SRAM elimination
 - High scalability and generalizability
 - Systolic array

Related resource

- Unary computing website
 - https://unarycomputing.github.io
- Publicly available simulator
 - https://github.com/diwu1990/UnarySim
 - https://github.com/diwu1990/uSystolic-Sim

Thank you! Q & A

<u>Di Wu</u> and Joshua San Miguel <u>di.wu@ece.wisc.edu</u> and <u>jsanmiguel@wisc.edu</u>

